Advertisement

The Role of Platelets in the Tumor Microenvironment

  • Kelly E. Johnson
  • Sandra S. McAllister
  • Joseph E. ItalianoJr.
  • Elisabeth M. Battinelli
Chapter

Abstract

Platelets are small, anuclear cells found in the circulation that have an important and well-defined role in hemostasis and wound healing. Known as the “band-aids of the blood,” these cells rapidly activate, aggregate, and release a potent milieu of growth factors, cytokines, and other biological mediators at the site of vascular damage, forming a clot. Compelling evidence has revealed that tumors can co-opt the normal functions of platelets in order to advance tumor progression and metastasis. Indeed, we now know that platelets are a key component of the tumor microenvironment and that they promote cancer progression in a myriad of ways; platelets drive tumor cell invasion and epithelial to mesenchymal transition, they promote angiogenesis, they facilitate intravasation and extravasation of tumor cells, they protect disseminated tumor cells from shear forces and immune surveillance within the circulation, and they function as long-distance cargo carriers that transmit signals between primary tumors, metastases, and the bone marrow. In this chapter, we will examine the current body of evidence on the role of platelets in cancer along with the underlying mechanisms and explore platelet-targeted therapies as a novel and promising approach to cancer treatment.

Keywords

Platelet Angiogenesis EMT Alpha-granule Tumor cell-induced platelet aggregation VEGF Endostatin P-selectin VTE Thrombocytosis Thrombocytopenia 

References

  1. 1.
    Sabrkhany S, Griffioen AW, Oude Egbrink MG. The role of blood platelets in tumor angiogenesis. Biochim Biophys Acta. 2011;1815(2):189–96.PubMedGoogle Scholar
  2. 2.
    Battinelli EM, Hartwig JH, Italiano JE Jr. Delivering new insight into the biology of megakaryopoiesis and thrombopoiesis. Curr Opin Hematol. 2007;14(5):419–26.PubMedCrossRefGoogle Scholar
  3. 3.
    Italiano JE Jr, Richardson JL, Patel-Hett S, Battinelli E, Zaslavsky A, Short S, et al. Angiogenesis is regulated by a novel mechanism: pro- and antiangiogenic proteins are organized into separate platelet alpha granules and differentially released. Blood. 2008;111(3):1227–33.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Harker LA. The kinetics of platelet production and destruction in man. Clin Haematol. 1977;6(3):671–93.PubMedGoogle Scholar
  5. 5.
    Blair P, Flaumenhaft R. Platelet alpha-granules: basic biology and clinical correlates. Blood Rev. 2009;23(4):177–89.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Coppinger JA, Cagney G, Toomey S, Kislinger T, Belton O, McRedmond JP, et al. Characterization of the proteins released from activated platelets leads to localization of novel platelet proteins in human atherosclerotic lesions. Blood. 2004;103(6):2096–104.PubMedCrossRefGoogle Scholar
  7. 7.
    Brass L. Understanding and evaluating platelet function. Hematology Am Soc of Hematol Am Educ Program. 2010;2010:387–96.Google Scholar
  8. 8.
    Golebiewska EM, Poole AW. Platelet secretion: from haemostasis to wound healing and beyond. Blood Rev. 2015;29(3):153–62.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Ciferri S, Emiliani C, Guglielmini G, Orlacchio A, Nenci GG, Gresele P. Platelets release their lysosomal content in vivo in humans upon activation. Thromb Haemost. 2000;83(1):157–64.PubMedGoogle Scholar
  10. 10.
    Yang H, Lang S, Zhai Z, Li L, Kahr WH, Chen P, et al. Fibrinogen is required for maintenance of platelet intracellular and cell-surface P-selectin expression. Blood. 2009;114(2):425–36.PubMedCrossRefGoogle Scholar
  11. 11.
    Li Z, Delaney MK, O’Brien KA, Du X. Signaling during platelet adhesion and activation. Arterioscler Thromb Vasc Biol. 2010;30(12):2341–9.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Franco AT, Corken A, Ware J. Platelets at the interface of thrombosis, inflammation, and cancer. Blood. 2015;126(5):582–8.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Bouillaud S, Bouillaud J. De l’Obliteration des veines et de son influence sur la formation des hydropisies partielles: consideration sur la hydropisies passive et general. Arch Gen Med. 1823;1:188–204.Google Scholar
  14. 14.
    Trousseau A. Phlegmasia alba dolens. Clin Med Hotel-Dieu Paris. 1865:94–5.Google Scholar
  15. 15.
    Tranum BL, Haut A. Thrombocytosis: platelet kinetics in neoplasia. J Lab Clin Med. 1974;84(5):615–9.PubMedGoogle Scholar
  16. 16.
    Levin J, Conley CL. Thrombocytosis associated with malignant disease. Arch Intern Med. 1964;114:497–500.PubMedCrossRefGoogle Scholar
  17. 17.
    Gucer F, Moser F, Tamussino K, Reich O, Haas J, Arikan G, et al. Thrombocytosis as a prognostic factor in endometrial carcinoma. Gynecol Oncol. 1998;70(2):210–4.PubMedCrossRefGoogle Scholar
  18. 18.
    Brown KM, Domin C, Aranha GV, Yong S, Shoup M. Increased preoperative platelet count is associated with decreased survival after resection for adenocarcinoma of the pancreas. Am J Surg. 2005;189(3):278–82.PubMedCrossRefGoogle Scholar
  19. 19.
    Taucher S, Salat A, Gnant M, Kwasny W, Mlineritsch B, Menzel RC, et al. Impact of pretreatment thrombocytosis on survival in primary breast cancer. Thromb Haemost. 2003;89(6):1098–106.PubMedGoogle Scholar
  20. 20.
    Ikeda M, Furukawa H, Imamura H, Shimizu J, Ishida H, Masutani S, et al. Poor prognosis associated with thrombocytosis in patients with gastric cancer. Ann Surg Oncol. 2002;9(3):287–91.PubMedCrossRefGoogle Scholar
  21. 21.
    Monreal M, Fernandez-Llamazares J, Pinol M, Julian JF, Broggi M, Escola D, et al. Platelet count and survival in patients with colorectal cancer—a preliminary study. Thromb Haemost. 1998;79(5):916–8.PubMedGoogle Scholar
  22. 22.
    Symbas NP, Townsend MF, El-Galley R, Keane TE, Graham SD, Petros JA. Poor prognosis associated with thrombocytosis in patients with renal cell carcinoma. BJU Int. 2000;86(3):203–7.PubMedCrossRefGoogle Scholar
  23. 23.
    Simanek R, Vormittag R, Ay C, Alguel G, Dunkler D, Schwarzinger I, et al. High platelet count associated with venous thromboembolism in cancer patients: results from the Vienna Cancer and Thrombosis Study (CATS). J Thromb haemost. 2010;8(1):114–20.PubMedCrossRefGoogle Scholar
  24. 24.
    Timp JF, Braekkan SK, Versteeg HH, Cannegieter SC. Epidemiology of cancer-associated venous thrombosis. Blood. 2013;122(10):1712–23.PubMedCrossRefGoogle Scholar
  25. 25.
    Gasic GJ, Gasic TB, Galanti N, Johnson T, Murphy S. Platelet-tumor-cell interactions in mice. The role of platelets in the spread of malignant disease. Int J Cancer. 1973;11(3):704–18.PubMedCrossRefGoogle Scholar
  26. 26.
    Jain S, Russell S, Ware J. Platelet glycoprotein VI facilitates experimental lung metastasis in syngenic mouse models. J Thromb Haemost. 2009;7(10):1713–7.PubMedCrossRefGoogle Scholar
  27. 27.
    Jain S, Zuka M, Liu J, Russell S, Dent J, Guerrero JA, et al. Platelet glycoprotein Ib alpha supports experimental lung metastasis. Proc Natl Acad Sci U S A. 2007;104(21):9024–8.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Kim YJ, Borsig L, Varki NM, Varki A. P-selectin deficiency attenuates tumor growth and metastasis. Proc Natl Acad Sci U S A. 1998;95(16):9325–30.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Guerrero JA, Bennett C, van der Weyden L, McKinney H, Chin M, Nurden P, et al. Gray platelet syndrome: proinflammatory megakaryocytes and alpha-granule loss cause myelofibrosis and confer metastasis resistance in mice. Blood. 2014;124(24):3624–35.PubMedCrossRefGoogle Scholar
  30. 30.
    Camerer E, Qazi AA, Duong DN, Cornelissen I, Advincula R, Coughlin SR. Platelets, protease-activated receptors, and fibrinogen in hematogenous metastasis. Blood. 2004;104(2):397–401.PubMedCrossRefGoogle Scholar
  31. 31.
    Dvorak HF. Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med. 1986;315(26):1650–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Kuznetsov HS, Marsh T, Markens BA, Castano Z, Greene-Colozzi A, Hay SA, et al. Identification of luminal breast cancers that establish a tumor-supportive macroenvironment defined by proangiogenic platelets and bone marrow-derived cells. Cancer Discov. 2012;2(12):1150–65.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    McDonald DM, Baluk P. Significance of blood vessel leakiness in cancer. Cancer Res. 2002;62(18):5381–5.PubMedGoogle Scholar
  34. 34.
    Zacharski LR, Memoli VA, Ornstein DL, Rousseau SM, Kisiel W, Kudryk BJ. Tumor cell procoagulant and urokinase expression in carcinoma of the ovary. J Natl Cancer Inst. 1993;85(15):1225–30.PubMedCrossRefGoogle Scholar
  35. 35.
    Wojtukiewicz MZ, Zacharski LR, Memoli VA, Kisiel W, Kudryk BJ, Rousseau SM, et al. Malignant melanoma. Interaction with coagulation and fibrinolysis pathways in situ. Am J Clin Pathol. 1990;93(4):516–21.PubMedCrossRefGoogle Scholar
  36. 36.
    Grossi IM, Fitzgerald LA, Kendall A, Taylor JD, Sloane BF, Honn KV. Inhibition of human tumor cell induced platelet aggregation by antibodies to platelet glycoproteins Ib and IIb/IIIa. Proc Soc Exp Biol Med. 1987;186(3):378–83.Google Scholar
  37. 37.
    Jurasz P, Alonso-Escolano D, Radomski MW. Platelet—cancer interactions: mechanisms and pharmacology of tumour cell-induced platelet aggregation. Br J Pharmacol. 2004;143(7):819–26.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Honn KV, Cavanaugh P, Evens C, Taylor JD, Sloane BF. Tumor cell-platelet aggregation: induced by cathepsin B-like proteinase and inhibited by prostacyclin. Science. 1982;217(4559):540–2.PubMedCrossRefGoogle Scholar
  39. 39.
    Bertozzi CC, Schmaier AA, Mericko P, Hess PR, Zou Z, Chen M, et al. Platelets regulate lymphatic vascular development through CLEC-2-SLP-76 signaling. Blood. 2010;116(4):661–70.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Suzuki-Inoue K, Kato Y, Inoue O, Kaneko MK, Mishima K, Yatomi Y, et al. Involvement of the snake toxin receptor CLEC-2, in podoplanin-mediated platelet activation, by cancer cells. J Biol Chem. 2007;282(36):25993–6001.PubMedCrossRefGoogle Scholar
  41. 41.
    Stone JP, Wagner DD. P-selectin mediates adhesion of platelets to neuroblastoma and small cell lung cancer. J Clin Invest. 1993;92(2):804–13.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Ludwig RJ, Boehme B, Podda M, Henschler R, Jager E, Tandi C, et al. Endothelial P-selectin as a target of heparin action in experimental melanoma lung metastasis. Cancer Res. 2004;64(8):2743–50.PubMedCrossRefGoogle Scholar
  43. 43.
    Boukerche H, Berthier-Vergnes O, Penin F, Tabone E, Lizard G, Bailly M, et al. Human melanoma cell lines differ in their capacity to release ADP and aggregate platelets. Br J Haematol. 1994;87(4):763–72.PubMedCrossRefGoogle Scholar
  44. 44.
    Alonso-Escolano D, Strongin AY, Chung AW, Deryugina EI, Radomski MW. Membrane type-1 matrix metalloproteinase stimulates tumour cell-induced platelet aggregation: role of receptor glycoproteins. Br J Pharmacol. 2004;141(2):241–52.PubMedCrossRefGoogle Scholar
  45. 45.
    Pacchiarini L, Zucchella M, Milanesi G, Tacconi F, Bonomi E, Canevari A, et al. Thromboxane production by platelets during tumor cell-induced platelet activation. Invasion Metastasis. 1991;11(2):102–9.PubMedGoogle Scholar
  46. 46.
    Honn KV, Chen YQ, Timar J, Onoda JM, Hatfield JS, Fligiel SE, et al. Alpha IIb beta 3 integrin expression and function in subpopulations of murine tumors. Exp Cell Res. 1992;201(1):23–32.PubMedCrossRefGoogle Scholar
  47. 47.
    Jones DS, Wallace AC, Fraser EE. Sequence of events in experimental metastases of Walker 256 tumor: light, immunofluorescent, and electron microscopic observations. J Natl Cancer Inst. 1971;46(3):493–504.PubMedGoogle Scholar
  48. 48.
    Sindelar WF, Tralka TS, Ketcham AS. Electron microscopic observations on formation of pulmonary metastases. J Surg Res. 1975;18(2):137–61.PubMedCrossRefGoogle Scholar
  49. 49.
    Abecassis J, Beretz A, Millon-Collard R, Fricker JP, Eber M, Cazenave JP. In vitro interactions between human breast cancer cells MCF-7 and human blood platelets. Thromb Res. 1987;47(6):693–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Heinmoller E, Weinel RJ, Heidtmann HH, Salge U, Seitz R, Schmitz I, et al. Studies on tumor-cell-induced platelet aggregation in human lung cancer cell lines. J Cancer Res Clin Oncol. 1996;122(12):735–44.PubMedCrossRefGoogle Scholar
  51. 51.
    Mitrugno A, Williams D, Kerrigan SW, Moran N. A novel and essential role for FcgammaRIIa in cancer cell-induced platelet activation. Blood. 2014;123(2):249–60.PubMedCrossRefGoogle Scholar
  52. 52.
    Heinmoller E, Schropp T, Kisker O, Simon B, Seitz R, Weinel RJ. Tumor cell-induced platelet aggregation in vitro by human pancreatic cancer cell lines. Scand J Gastroenterol. 1995;30(10):1008–16.PubMedCrossRefGoogle Scholar
  53. 53.
    Geddings JE, Mackman N. Tumor-derived tissue factor-positive microparticles and venous thrombosis in cancer patients. Blood. 2013;122(11):1873–80.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    van den Berg YW, Osanto S, Reitsma PH, Versteeg HH. The relationship between tissue factor and cancer progression: insights from bench and bedside. Blood. 2012;119(4):924–32.PubMedCrossRefGoogle Scholar
  55. 55.
    Fuchs TA, Brill A, Duerschmied D, Schatzberg D, Monestier M, Myers DD Jr, et al. Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci U S A. 2010;107(36):15880–5.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Demers M, Krause DS, Schatzberg D, Martinod K, Voorhees JR, Fuchs TA, et al. Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancer-associated thrombosis. Proc Natl Acad Sci U S A. 2012;109(32):13076–81.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Haralabopoulos GC, Grant DS, Kleinman HK, Maragoudakis ME. Thrombin promotes endothelial cell alignment in matrigel in vitro and angiogenesis in vivo. Am J Physiol. 1997;273(1 Pt 1):C239–45.PubMedCrossRefGoogle Scholar
  58. 58.
    Bastida E, Escolar G, Almirall L, Ordinas A. Platelet activation induced by a human neuroblastoma tumor cell line is reduced by prior administration of ticlopidine. Thromb Haemost. 1986;55(3):333–7.PubMedGoogle Scholar
  59. 59.
    Kim HA, Seo KH, Kang YR, Ko HM, Kim KJ, Back HK, et al. Mechanisms of platelet-activating factor-induced enhancement of VEGF expression. Cell Physiol Biochem. 2011;27(1):55–62.PubMedCrossRefGoogle Scholar
  60. 60.
    Di Stefano JF, Kirchner M, Dagenhardt K, Hagag N. Activation of cancer cell proteases and cytotoxicity by EGF and PDGF growth factors. Am J Med Sci. 1990;300(1):9–15.PubMedCrossRefGoogle Scholar
  61. 61.
    Cathcart MC, Gately K, Cummins R, Kay E, O’Byrne KJ, Pidgeon GP. Examination of thromboxane synthase as a prognostic factor and therapeutic target in non-small cell lung cancer. Mol Cancer. 2011;10:25.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Labelle M, Begum S, Hynes RO. Direct signaling between platelets and cancer cells induces an epithelial-mesenchymal-like transition and promotes metastasis. Cancer Cell. 2011;20(5):576–90.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Labelle M, Begum S, Hynes RO. Platelets guide the formation of early metastatic niches. Proc Natl Acad Sci U S A. 2014;111(30):E3053–61.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Gotzmann J, Fischer AN, Zojer M, Mikula M, Proell V, Huber H, et al. A crucial function of PDGF in TGF-beta-mediated cancer progression of hepatocytes. Oncogene. 2006;25(22):3170–85.PubMedCrossRefGoogle Scholar
  65. 65.
    Leblanc R, Lee SC, David M, Bordet JC, Norman DD, Patil R, et al. Interaction of platelet-derived autotaxin with tumor integrin alphaVbeta3 controls metastasis of breast cancer cells to bone. Blood. 2014;124(20):3141–50.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    van Holten TC, Bleijerveld OB, Wijten P, de Groot PG, Heck AJ, Barendrecht AD, et al. Quantitative proteomics analysis reveals similar release profiles following specific PAR-1 or PAR-4 stimulation of platelets. Cardiovasc Res. 2014;103(1):140–6.PubMedCrossRefGoogle Scholar
  67. 67.
    Nunes-Xavier CE, Elson A, Pulido R. Epidermal growth factor receptor (EGFR)-mediated positive feedback of protein-tyrosine phosphatase epsilon (PTPepsilon) on ERK1/2 and AKT protein pathways is required for survival of human breast cancer cells. J Biol Chem. 2012;287(5):3433–44.PubMedCrossRefGoogle Scholar
  68. 68.
    Holmes CE, Levis JE, Ornstein DL. Activated platelets enhance ovarian cancer cell invasion in a cellular model of metastasis. Clin Exp Metastasis. 2009;26(7):653–61.PubMedCrossRefGoogle Scholar
  69. 69.
    Belloc C, Lu H, Soria C, Fridman R, Legrand Y, Menashi S. The effect of platelets on invasiveness and protease production of human mammary tumor cells. Int J Cancer. 1995;60(3):413–7.PubMedCrossRefGoogle Scholar
  70. 70.
    Menashi S, He L, Soria C, Soria J, Thomaidis A, Legrand Y. Modulation of endothelial cells fibrinolytic activity by platelets. Thromb Haemost. 1991;65(1):77–81.PubMedGoogle Scholar
  71. 71.
    Alonso-Escolano D, Medina C, Cieslik K, Radomski A, Jurasz P, Santos-Martinez MJ, et al. Protein kinase C delta mediates platelet-induced breast cancer cell invasion. J Pharmacol Exp Ther. 2006;318(1):373–80.PubMedCrossRefGoogle Scholar
  72. 72.
    Lieubeau B, Garrigue L, Barbieux I, Meflah K, Gregoire M. The role of transforming growth factor beta 1 in the fibroblastic reaction associated with rat colorectal tumor development. Cancer Res. 1994;54(24):6526–32.PubMedGoogle Scholar
  73. 73.
    Shao ZM, Nguyen M, Barsky SH. Human breast carcinoma desmoplasia is PDGF initiated. Oncogene. 2000;19(38):4337–45.PubMedCrossRefGoogle Scholar
  74. 74.
    Anderberg C, Cunha SI, Zhai Z, Cortez E, Pardali E, Johnson JR, et al. Deficiency for endoglin in tumor vasculature weakens the endothelial barrier to metastatic dissemination. J Exp Med. 2013;210(3):563–79.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Schumacher D, Strilic B, Sivaraj KK, Wettschureck N, Offermanns S. Platelet-derived nucleotides promote tumor-cell transendothelial migration and metastasis via P2Y2 receptor. Cancer Cell. 2013;24(1):130–7.PubMedCrossRefGoogle Scholar
  76. 76.
    Pinedo HM, Verheul HM, D’Amato RJ, Folkman J. Involvement of platelets in tumour angiogenesis? Lancet. 1998;352(9142):1775–7.PubMedCrossRefGoogle Scholar
  77. 77.
    Battinelli EM, Markens BA, Italiano JEJ. Release of angiogenesis regulatory proteins from platelet alpha granules: modulation of physiologic and pathologic angiogenesis. Blood. 2011;118(5):1359–69.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Holmes CE, Huang JC, Pace TR, Howard AB, Muss HB. Tamoxifen and aromatase inhibitors differentially affect vascular endothelial growth factor and endostatin levels in women with breast cancer. Clin Cancer Res. 2008;14(10):3070–6.PubMedCrossRefGoogle Scholar
  79. 79.
    Peterson JE, Zurakowski D, Italiano JE Jr, Michel LV, Fox L, Klement GL, et al. Normal ranges of angiogenesis regulatory proteins in human platelets. Am J Hematol. 2010;85(7):487–93.PubMedCrossRefGoogle Scholar
  80. 80.
    Jelkmann W. Pitfalls in the measurement of circulating vascular endothelial growth factor. Clin Chem. 2001;47(4):617–23.PubMedGoogle Scholar
  81. 81.
    Pipili-Synetos E, Papadimitriou E, Maragoudakis ME. Evidence that platelets promote tube formation by endothelial cells on matrigel. Br J Pharmacol. 1998;125(6):1252–7.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Kisucka J, Butterfield CE, Duda DG, Eichenberger SC, Saffaripour S, Ware J, et al. Platelets and platelet adhesion support angiogenesis while preventing excessive hemorrhage. Proc Natl Acad Sci U S A. 2006;103(4):855–60.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Li R, Ren M, Chen N, Luo M, Deng X, Xia J, et al. Presence of intratumoral platelets is associated with tumor vessel structure and metastasis. BMC Cancer. 2014;14:167.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Ma L, Perini R, McKnight W, Dicay M, Klein A, Hollenberg MD, et al. Proteinase-activated receptors 1 and 4 counter-regulate endostatin and VEGF release from human platelets. Proc Natl Acad Sci U S A. 2005;102(1):216–20.PubMedCrossRefGoogle Scholar
  85. 85.
    Pietramaggiori G, Scherer SS, Cervi D, Klement G, Orgill DP. Tumors stimulate platelet delivery of angiogenic factors in vivo: an unexpected benefit. Am J Pathol. 2008;173(6):1609–16.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Langer H, May AE, Daub K, Heinzmann U, Lang P, Schumm M, et al. Adherent platelets recruit and induce differentiation of murine embryonic endothelial progenitor cells to mature endothelial cells in vitro. Circ Res. 2006;98(2):e2–10.PubMedCrossRefGoogle Scholar
  87. 87.
    Ho-Tin-Noe B, Goerge T, Cifuni SM, Duerschmied D, Wagner DD. Platelet granule secretion continuously prevents intratumor hemorrhage. Cancer Res. 2008;68(16):6851–8.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Klement GL, Yip TT, Cassiola F, Kikuchi L, Cervi D, Podust V, et al. Platelets actively sequester angiogenesis regulators. Blood. 2009;113(12):2835–42.PubMedCrossRefGoogle Scholar
  89. 89.
    Peterson JE, Zurakowski D, Italiano JEJ, Michel LV, Connors S, Oenick M, et al. VEGF, PF4 and PDGF are elevated in platelets of colorectal cancer patients. Angiogenesis. 2012;15(2):265–73.PubMedCrossRefGoogle Scholar
  90. 90.
    Kerr BA, Miocinovic R, Smith AK, Klein EA, Byzova TV. Comparison of tumor and microenvironment secretomes in plasma and in platelets during prostate cancer growth in a xenograft model. Neoplasia. 2010;12(5):388–96.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Fidler I. Metastasis: quantitative analysis of distribution and fate of tumor emboli labeled with 125 I-5-iodo-2′-deoxyuridine. J Natl Cancer Inst. 1970;45(4):773–82.PubMedGoogle Scholar
  92. 92.
    Fidler I. The relationship of embolic homogeneity, number, size and viability to the incidence of experimental metastasis. Eur J Cancer. 1873;9:223–7.CrossRefGoogle Scholar
  93. 93.
    Brooks D. The biorheology of tumor cells. Biorheology. 1984;21(1–2):85–91.PubMedCrossRefGoogle Scholar
  94. 94.
    Egan K, Cooke N, Kenny D. Living in shear: platelets protect cancer cells from shear induced damage. Clin Exp Metastasis. 2014;31(6):697–704.PubMedCrossRefGoogle Scholar
  95. 95.
    Placke T, Salih HR, Kopp HG. GITR ligand provided by thrombopoietic cells inhibits NK cell antitumor activity. J Immunol. 2012;189(1):154–60.PubMedCrossRefGoogle Scholar
  96. 96.
    Kopp HG, Placke T, Salih HR. Platelet-derived transforming growth factor-beta down-regulates NKG2D thereby inhibiting natural killer cell antitumor reactivity. Cancer Res. 2009;69(19):7775–83.PubMedCrossRefGoogle Scholar
  97. 97.
    Palumbo JS, Talmage KE, Massari JV, La Jeunesse CM, Flick MJ, Kombrinck KW, et al. Platelets and fibrin(ogen) increase metastatic potential by impeding natural killer cell-mediated elimination of tumor cells. Blood. 2005;105(1):178–85.PubMedCrossRefGoogle Scholar
  98. 98.
    Lee YL, Lee LW, CY S, Hsiao G, Yang YY, Leu SJ, et al. Virally inactivated human platelet concentrate lysate induces regulatory T cells and immunosuppressive effect in a murine asthma model. Transfusion. 2013;53(9):1918–28.PubMedCrossRefGoogle Scholar
  99. 99.
    Placke T, Orgel M, Schaller M, Jung G, Rammensee HG, Kopp HG, et al. Platelet-derived MHC class I confers a pseudonormal phenotype to cancer cells that subverts the antitumor reactivity of natural killer immune cells. Cancer Res. 2012;72(2):440–8.PubMedCrossRefGoogle Scholar
  100. 100.
    Chen YQ, Trikha M, Gao X, Bazaz R, Porter AT, Timar J, et al. Ectopic expression of platelet integrin alphaIIb beta3 in tumor cells from various species and histological origin. Int J Cancer. 1997;72(4):642–8.PubMedCrossRefGoogle Scholar
  101. 101.
    Timar J, Tovari J, Raso E, Meszaros L, Bereczky B, Lapis K. Platelet-mimicry of cancer cells: epiphenomenon with clinical significance. Oncology. 2005;69(3):185–201.PubMedCrossRefGoogle Scholar
  102. 102.
    Malik AB. Pulmonary microembolism. Physiol Rev. 1983;63(3):1114–207.PubMedCrossRefGoogle Scholar
  103. 103.
    Lewalle JM, Castronovo V, Goffinet G, Foidart JM. Malignant cell attachment to endothelium of ex vivo perfused human umbilical vein. Modulation by platelets, plasma and fibronectin. Thromb Res. 1991;62(4):287–98.PubMedCrossRefGoogle Scholar
  104. 104.
    Reymond N, Borda d’Agua B, Ridley A. Crossing the endothelial barrier during metastasis. Nat Rev Cancer. 2013;13:858–70.PubMedCrossRefGoogle Scholar
  105. 105.
    Yan M, Jurasz P. The role of platelets in the tumor microenvironment: from solid tumors to leukemia. Biochim Biophys Acta. 2016;1863(3):392–400.PubMedCrossRefGoogle Scholar
  106. 106.
    Feng W, Madajka M, Kerr BA, Mahabeleshwar GH, Whiteheart SW, Byzova TV. A novel role for platelet secretion in angiogenesis: mediating bone marrow-derived cell mobilization and homing. Blood. 2011;117(14):3893–902.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Stellos K, Langer H, Daub K, Schoenberger T, Gauss A, Geisler T, et al. Platelet-derived stromal cell-derived factor-1 regulates adhesion and promotes differentiation of human CD34+ cells to endothelial progenitor cells. Circulation. 2008;117(2):206–15.PubMedCrossRefGoogle Scholar
  108. 108.
    Kerr BA, McCabe NP, Feng W, Byzova TV. Platelets govern pre-metastatic tumor communication to bone. Oncogene. 2013;32(36):4319–24.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Boucharaba A, Serre CM, Gres S, Saulnier-Blache JS, Bordet JC, Guglielmi J, et al. Platelet-derived lysophosphatidic acid supports the progression of osteolytic bone metastases in breast cancer. J Clin Invest. 2004;114(12):1714–25.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Barry OP, Pratico D, Savani RC, FitzGerald GA. Modulation of monocyte-endothelial cell interactions by platelet microparticles. J Clin Invest. 1998;102(1):136–44.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Janowska-Wieczorek A, Marquez-Curtis LA, Wysoczynski M, Ratajczak MZ. Enhancing effect of platelet-derived microvesicles on the invasive potential of breast cancer cells. Transfusion. 2006;46(7):1199–209.PubMedCrossRefGoogle Scholar
  112. 112.
    Dashevsky O, Varon D, Brill A. Platelet-derived microparticles promote invasiveness of prostate cancer cells via upregulation of MMP-2 production. Int J Cancer. 2009;124(8):1773–7.PubMedCrossRefGoogle Scholar
  113. 113.
    Brill A, Dashevsky O, Rivo J, Gozal Y, Varon D. Platelet-derived microparticles induce angiogenesis and stimulate post-ischemic revascularization. Cardiovasc Res. 2005;67(1):30–8.PubMedCrossRefGoogle Scholar
  114. 114.
    Janowska-Wieczorek A, Wysoczynski M, Kijowski J, Marquez-Curtis L, Machalinski B, Ratajczak J, et al. Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. Int J Cancer. 2005;113(5):752–60.PubMedCrossRefGoogle Scholar
  115. 115.
    Faldt R, Ankerst J, Zoucas E. Inhibition of platelet aggregation by myeloid leukaemic cells demonstrated in vitro. Br J Haematol. 1987;66(4):529–34.PubMedCrossRefGoogle Scholar
  116. 116.
    Pulte D, Olson KE, Broekman MJ, Islam N, Ballard HS, Furman RR, et al. CD39 activity correlates with stage and inhibits platelet reactivity in chronic lymphocytic leukemia. J Transl Med. 2007;5:23.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Jaime-Perez JC, Cantu-Rodriguez OG, Herrera-Garza JL, Gomez-Almaguer D. Platelet aggregation in children with acute lymphoblastic leukemia during induction of remission therapy. Arch Med Res. 2004;35(2):141–4.PubMedCrossRefGoogle Scholar
  118. 118.
    Gerrard JM, McNicol A. Platelet storage pool deficiency, leukemia, and myelodysplastic syndromes. Leuk Lymphoma. 1992;8(4–5):277–81.PubMedCrossRefGoogle Scholar
  119. 119.
    Woodcock BE, Cooper PC, Brown PR, Pickering C, Winfield DA, Preston FE. The platelet defect in acute myeloid leukaemia. J Clin Pathol. 1984;37(12):1339–42.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Kubota Y, Tanaka T, Ohnishi H, Kitanaka A, Okutani Y, Taminato T, et al. Constitutively activated phosphatidylinositol 3-kinase primes platelets from patients with chronic myelogenous leukemia for thrombopoietin-induced aggregation. Leukemia. 2004;18(6):1127–37.PubMedCrossRefGoogle Scholar
  121. 121.
    Bruserud O, Foss B, Hervig T. Effects of normal platelets on proliferation and constitutive cytokine secretion by human acute myelogenous leukaemia blasts. Platelets. 1997;8(6):397–404.PubMedCrossRefGoogle Scholar
  122. 122.
    Velez J, Enciso LJ, Suarez M, Fiegl M, Grismaldo A, Lopez C, et al. Platelets promote mitochondrial uncoupling and resistance to apoptosis in leukemia cells: a novel paradigm for the bone marrow microenvironment. Cancer Microenviron. 2014;7(1–2):79–90.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Falanga A, Marchetti M, Russo L. Venous thromboembolism in the hematologic malignancies. Curr Opin Oncol. 2012;24(6):702–10.PubMedCrossRefGoogle Scholar
  124. 124.
    Lemancewicz D, Bolkun L, Mantur M, Semeniuk J, Kloczko J, Dzieciol J. Bone marrow megakaryocytes, soluble P-selectin and thrombopoietic cytokines in multiple myeloma patients. Platelets. 2014;25(3):181–7.PubMedCrossRefGoogle Scholar
  125. 125.
    Kawano M, Hirano T, Matsuda T, Taga T, Horii Y, Iwato K, et al. Autocrine generation and requirement of BSF-2/IL-6 for human multiple myelomas. Nature. 1988;332(6159):83–5.PubMedCrossRefGoogle Scholar
  126. 126.
    Ferriere JP, Bernard D, Legros M, Chassagne J, Chollet P, Gaillard G, et al. beta-Thromboglobulin in patients with breast cancer. Am J Hematol. 1985;19(1):47–53.PubMedCrossRefGoogle Scholar
  127. 127.
    Yazaki T, Inage H, Iizumi T, Koyama A, Kanoh S, Koiso K, et al. Studies on platelet function in patients with prostatic cancer. Preliminary report. Urology. 1987;30(1):60–3.PubMedCrossRefGoogle Scholar
  128. 128.
    Prisco D, Paniccia R, Coppo M, Filippini M, Francalanci I, Brunelli T, et al. Platelet activation and platelet lipid composition in pulmonary cancer. Prostaglandins Leukot Essent Fatty Acids. 1995;53(1):65–8.PubMedCrossRefGoogle Scholar
  129. 129.
    Abbasciano V, Bianchi MP, Trevisani L, Sartori S, Gilli G, Zavagli G. Platelet activation and fibrinolysis in large bowel cancer. Oncology. 1995;52(5):381–4.PubMedCrossRefGoogle Scholar
  130. 130.
    Riedl J, Pabinger I, Ay C. Platelets in cancer and thrombosis. Hamostaseologie. 2014;34(1):54–62.PubMedCrossRefGoogle Scholar
  131. 131.
    Ay C, Simanek R, Vormittag R, Dunkler D, Alguel G, Koder S, et al. High plasma levels of soluble P-selectin are predictive of venous thromboembolism in cancer patients: results from the Vienna Cancer and Thrombosis Study (CATS). Blood. 2008;112(7):2703–8.PubMedCrossRefGoogle Scholar
  132. 132.
    Zhuge Y, Zhou JY, Yang GD, DL Z, XL X, Tian MQ, et al. Activated changes of platelet ultra microstructure and plasma granule membrane protein 140 in patients with non-small cell lung cancer. Chin Med J (Engl). 2009;122(9):1026–31.Google Scholar
  133. 133.
    Best MG, Sol N, Kooi I, Tannous J, Westerman BA, Rustenburg F, et al. RNA-seq of tumor-educated platelets enables blood-based pan-cancer, multiclass, and molecular pathway cancer diagnostics. Cancer Cell. 2015;28(5):666–76.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Zaslavsky A, Baek KH, Lynch RC, Short S, Grillo J, Folkman J, et al. Platelet-derived thrombospondin-1 is a critical negative regulator and potential biomarker of angiogenesis. Blood. 2010;115(22):4605–13.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Stone RL, Nick AM, McNeish IA, Balkwill F, Han HD, Bottsford-Miller J, et al. Paraneoplastic thrombocytosis in ovarian cancer. N Engl J Med. 2012;366(7):610–8.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Coward J, Kulbe H, Chakravarty P, Leader D, Vassileva V, Leinster DA, et al. Interleukin-6 as a therapeutic target in human ovarian cancer. Clin Cancer Res. 2011;17(18):6083–96.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Rossi JF, Negrier S, James ND, Kocak I, Hawkins R, Davis H, et al. A phase I/II study of siltuximab (CNTO 328), an anti-interleukin-6 monoclonal antibody, in metastatic renal cell cancer. Br J Cancer. 2010;103(8):1154–62.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Sasaki Y, Takahashi T, Miyazaki H, Matsumoto A, Kato T, Nakamura K, et al. Production of thrombopoietin by human carcinomas and its novel isoforms. Blood. 1999;94(6):1952–60.PubMedGoogle Scholar
  139. 139.
    Kowanetz M, Wu X, Lee J, Tan M, Hagenbeek T, Qu X, et al. Granulocyte-colony stimulating factor promotes lung metastasis through mobilization of Ly6G+Ly6C+ granulocytes. Proc Natl Acad Sci U S A. 2010;107(50):21248–55.PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Suzuki A, Takahashi T, Nakamura K, Tsuyuoka R, Okuno Y, Enomoto T, et al. Thrombocytosis in patients with tumors producing colony-stimulating factor. Blood. 1992;80(8):2052–9.PubMedGoogle Scholar
  141. 141.
    Estrov Z, Talpaz M, Mavligit G, Pazdur R, Harris D, Greenberg SM, et al. Elevated plasma thrombopoietic activity in patients with metastatic cancer-related thrombocytosis. Am J Med. 1995;98(6):551–8.PubMedCrossRefGoogle Scholar
  142. 142.
    Nishimura S, Nagasaki M, Kunishima S, Sawaguchi A, Sakata A, Sakaguchi H, et al. IL-1alpha induces thrombopoiesis through megakaryocyte rupture in response to acute platelet needs. J Cell Biol. 2015;209(3):453–66.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Amirkhosravi A, Mousa SA, Amaya M, Blaydes S, Desai H, Meyer T, et al. Inhibition of tumor cell-induced platelet aggregation and lung metastasis by the oral GpIIb/IIIa antagonist XV454. Thromb Haemost. 2003;90(3):549–54.PubMedGoogle Scholar
  144. 144.
    Su X, Floyd DH, Hughes A, Xiang J, Schneider JG, Uluckan O, et al. The ADP receptor P2RY12 regulates osteoclast function and pathologic bone remodeling. J Clin Invest. 2012;122(10):3579–92.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Battinelli EM, Markens BA, Kulenthirarajan RA, Machlus KR, Flaumenhaft R, Italiano JEJ. Anticoagulation inhibits tumor cell-mediated release of platelet angiogenic proteins and diminishes platelet angiogenic response. Blood. 2014;123(1):101–12.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Akl EA, Gunukula S, Barba M, Yosuico VE, van Doormaal FF, Kuipers S, et al. Parenteral anticoagulation in patients with cancer who have no therapeutic or prophylactic indication for anticoagulation. Cochrane Database Syst Rev. 2011;4:CD006652.Google Scholar
  147. 147.
    Akl EA, Kahale L, Terrenato I, Neumann I, Yosuico VE, Barba M, et al. Oral anticoagulation in patients with cancer who have no therapeutic or prophylactic indication for anticoagulation. Cochrane Database Syst Rev. 2014;7:CD006466.Google Scholar
  148. 148.
    Lyman GH, Khorana AA, Kuderer NM, Lee AY, Arcelus JI, Balaban EP, et al. Venous thromboembolism prophylaxis and treatment in patients with cancer: American Society of Clinical Oncology clinical practice guideline update. J Clin Oncol. 2013;31(17):2189–204.PubMedCrossRefGoogle Scholar
  149. 149.
    van Doormaal FF, Di Nisio M, Otten HM, Richel DJ, Prins M, Buller HR. Randomized trial of the effect of the low molecular weight heparin nadroparin on survival in patients with cancer. J Clin Oncol. 2011;29(15):2071–6.PubMedCrossRefGoogle Scholar
  150. 150.
    Rothwell PM, Fowkes FG, Belch JF, Ogawa H, Warlow CP, Meade TW. Effect of daily aspirin on long-term risk of death due to cancer: analysis of individual patient data from randomised trials. Lancet. 2011;377(9759):31–41.PubMedCrossRefGoogle Scholar
  151. 151.
    Futakuchi M, Ogawa K, Sano M, Tamano S, Takeshita F, Shirai T. Suppression of lung metastasis by aspirin but not indomethacin in an in vivo model of chemically induced hepatocellular carcinoma. Jpn J Cancer Res. 2002;93(10):1175–81.PubMedCrossRefGoogle Scholar
  152. 152.
    Thorat MA, Cuzick J. Prophylactic use of aspirin: systematic review of harms and approaches to mitigation in the general population. Eur J Epidemiol. 2015;30(1):5–18.PubMedCrossRefGoogle Scholar
  153. 153.
    Reimers MS, Bastiaannet E, Langley RE, van Eijk R, van Vlierberghe RL, Lemmens VE, et al. Expression of HLA class I antigen, aspirin use, and survival after a diagnosis of colon cancer. JAMA Intern Med. 2014;174(5):732–9.PubMedCrossRefGoogle Scholar
  154. 154.
    Cardwell CR, Kunzmann AT, Cantwell MM, Hughes C, Baron JA, Powe DG, et al. Low-dose aspirin use after diagnosis of colorectal cancer does not increase survival: a case-control analysis of a population-based cohort. Gastroenterology. 2014;146(3):700. –8. e2.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2017

Authors and Affiliations

  • Kelly E. Johnson
    • 1
    • 2
  • Sandra S. McAllister
    • 1
  • Joseph E. ItalianoJr.
    • 1
    • 2
    • 3
  • Elisabeth M. Battinelli
    • 1
    • 2
  1. 1.Division of Hematology, Department of MedicineBrigham and Women’s HospitalBostonUSA
  2. 2.Harvard Medical SchoolBostonUSA
  3. 3.Vascular Biology Program, Department of SurgeryBoston Children’s HospitalBostonUSA

Personalised recommendations