Skip to main content

Case Scenario for Fluid Therapy in Septic Shock

  • Chapter
  • First Online:
  • 1411 Accesses

Abstract

Septic shock represents a profound systemic inflammatory derangement with components of functional hypovolemia, altered oxygen delivery, myocardial dysfunction, peripheral vasoplegia, and diffuse capillary leak. In this case scenario, the patient exhibited all of the aforementioned findings with lactic acidosis, elevated troponin, persistent hypotension despite vasopressor use, acute kidney injury, and pneumonitis presumably from his sepsis. Concurrent with source control and early antibiotic administration, early and aggressive fluid therapy, maintenance of tissue perfusion, and judicious application of inotropic support remain a cornerstone of septic shock therapy. Early goal-directed therapy (EGDT) has been widely adopted as a protocolized methodology to ensure early and aggressive fluid resuscitation (in addition to vasopressors, steroids, and timed antibiotic administration). It has been postulated that bundle implementation may improve survival. Perioperative goal-directed fluid management may also affect outcome.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Landry DW, Levin HR, Gallant EM, Ashton Jr RC, Seo S, D'Alessandro D, et al. Vasopressin deficiency contributes to the vasodilation of septic shock. Circulation. 1997;95(5):1122–5 [Comparative Study].

    Article  CAS  PubMed  Google Scholar 

  2. Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. The accp/sccm consensus conference committee. American college of chest physicians/society of critical care medicine. 1992. Chest. 2009;136(5 Suppl), e28 [Biography Classical Article Historical Article].

    Google Scholar 

  3. Lopes MR, Auler Jr JO, Michard F. Volume management in critically ill patients: New insights. Clinics. 2006;61(4):345–50 [Review].

    Article  PubMed  Google Scholar 

  4. Boyd JH, Forbes J, Nakada TA, Walley KR, Russell JA. Fluid resuscitation in septic shock: A positive fluid balance and elevated central venous pressure are associated with increased mortality. Crit Care Med. 2011;39(2):259–65 [Comparative Study Research Support, Non-U.S. Gov't].

    Article  PubMed  Google Scholar 

  5. Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, et al. Surviving sepsis campaign: International guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med. 2013;41(2):580–637 [Consensus Development Conference Practice Guideline Research Support, Non-U.S. Gov't].

    Article  PubMed  Google Scholar 

  6. Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345(19):1368–77 [Clinical Trial Randomized Controlled Trial Research Support, Non-U.S. Gov't].

    Article  CAS  PubMed  Google Scholar 

  7. Levy MM, Pronovost PJ, Dellinger RP, Townsend S, Resar RK, Clemmer TP, et al. Sepsis change bundles: Converting guidelines into meaningful change in behavior and clinical outcome. Crit Care Med. 2004;32(11 Suppl):S595–7.

    Article  PubMed  Google Scholar 

  8. Schorr C. Performance improvement in the management of sepsis. Crit Care Nurs Clin North Am. 2011;23(1):203–13.

    Article  PubMed  Google Scholar 

  9. Huang DT, Clermont G, Dremsizov TT, Angus DC. Implementation of early goal-directed therapy for severe sepsis and septic shock: A decision analysis. Crit Care Med. 2007;35(9):2090–100 [Research Support, N.I.H., Extramural].

    Article  PubMed  Google Scholar 

  10. Gan TJ, Soppitt A, Maroof M. el-Moalem H, Robertson KM, Moretti E, et al. Goal-directed intraoperative fluid administration reduces length of hospital stay after major surgery. Anesthesiology. 2002;97(4):820–6 [Clinical Trial Randomized Controlled Trial Research Support, Non-U.S. Gov't].

    Article  PubMed  Google Scholar 

  11. Kumar A, Roberts D, Wood KE, Light B, Parrillo JE, Sharma S, et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit Care Med. 2006;34(6):1589–96 [Comparative Study Multicenter Study Research Support, Non-U.S. Gov't].

    Article  PubMed  Google Scholar 

  12. Jones AE, Brown MD, Trzeciak S, Shapiro NI, Garrett JS, Heffner AC, et al. The effect of a quantitative resuscitation strategy on mortality in patients with sepsis: A meta-analysis. Crit Care Med. 2008;36(10):2734–9 [Meta-Analysis Research Support, N.I.H., Extramural Review].

    Article  PubMed  PubMed Central  Google Scholar 

  13. Marchick MR, Kline JA, Jones AE. The significance of non-sustained hypotension in emergency department patients with sepsis. Intensive Care Med. 2009;35(7):1261–4.

    Article  PubMed  PubMed Central  Google Scholar 

  14. de Witt B, Joshi R, Meislin H, Mosier JM. Optimizing oxygen delivery in the critically ill: Assessment of volume responsiveness in the septic patient. J Emerg Med. 2014;47(5):608–15 [Review].

    Article  PubMed  Google Scholar 

  15. Yealy DM, Huang DT, Delaney A, Knight M, Randolph AG, Daniels R, et al. Recognizing and managing sepsis: What needs to be done? BMC Med. 2015;13:98.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Peake SL, Bailey M, Bellomo R, Cameron PA, Cross A, Delaney A, et al. Australasian resuscitation of sepsis evaluation (arise): A multi-centre, prospective, inception cohort study. Resuscitation. 2009;80(7):811–8 [Multicenter Study Research Support, Non-U.S. Gov't].

    Article  PubMed  Google Scholar 

  17. Mouncey PR, Osborn TM, Power GS, Harrison DA, Sadique MZ, Grieve RD, et al. Trial of early, goal-directed resuscitation for septic shock. N Engl J Med. 2015;372(14):1301–11 [Multicenter Study Pragmatic Clinical Trial Randomized Controlled Trial Research Support, Non-U.S. Gov't].

    Article  CAS  PubMed  Google Scholar 

  18. McIntyre L, Fergusson DA, Rowe B, Cook DJ, Arabi Y, Bagshaw SM, et al. The precise rct: Evolution of an early septic shock fluid resuscitation trial. Transfus Med Rev. 2012;26(4):333–41 [Randomized Controlled Trial Research Support, Non-U.S. Gov't].

    Article  PubMed  Google Scholar 

  19. Marik PE, Cavallazzi R, Vasu T, Hirani A. Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: A systematic review of the literature. Crit Care Med. 2009;37(9):2642–7 [Meta-Analysis Review].

    Article  PubMed  Google Scholar 

  20. Michard F. Changes in arterial pressure during mechanical ventilation. Anesthesiology. 2005;103(2):419–28; quiz 449–415. [Review].

    Article  PubMed  Google Scholar 

  21. Cannesson M, Vallet B, Michard F. Pulse pressure variation and stroke volume variation: From flying blind to flying right? Br J Anaesth. 2009;103(6):896–7; author reply 897–899. [Comment Letter].

    Article  CAS  PubMed  Google Scholar 

  22. Feissel M, Michard F, Faller JP, Teboul JL. The respiratory variation in inferior vena cava diameter as a guide to fluid therapy. Intensive Care Med. 2004;30(9):1834–7.

    Article  PubMed  Google Scholar 

  23. Zhang Z, Xu X, Ye S, Xu L. Ultrasonographic measurement of the respiratory variation in the inferior vena cava diameter is predictive of fluid responsiveness in critically ill patients: Systematic review and meta-analysis. Ultrasound Med Biol. 2014;40(5):845–53 [Meta-Analysis Research Support, Non-U.S. Gov't Review].

    Article  PubMed  Google Scholar 

  24. Sonoo T, Nakamura K, Ando T, Sen K, Maeda A, Kobayashi E, et al. Prospective analysis of cardiac collapsibility of inferior vena cava using ultrasonography. J Crit Care. 2015;10.

    Google Scholar 

  25. Broilo F, Meregalli A, Friedman G. Right internal jugular vein distensibility appears to be a surrogate marker for inferior vena cava vein distensibility for evaluating fluid responsiveness. Rev Bras Terapia Intensiva. 2015;27(3):205–11.

    Google Scholar 

  26. Ospina-Tascon GA, Bautista-Rincon DF, Umana M, Tafur JD, Gutierrez A, Garcia AF, et al. Persistently high venous-to-arterial carbon dioxide differences during early resuscitation are associated with poor outcomes in septic shock. Crit Care. 2013;17(6):R294 [Observational Study].

    Article  PubMed  PubMed Central  Google Scholar 

  27. Pope JVJA, Gaieski DF, Arnold RC, Trzeciak S. Shapiro NI; Emergency Medicine Shock Research Network (EMShockNet) Investigators. Multicenter study of central venous oxygen saturation (scvo(2)) as a predictor of mortality in patients with sepsis. Ann Emerg Med. 2010;55(1):40–6.

    Article  PubMed  Google Scholar 

  28. Marik PE. The demise of early goal-directed therapy for severe sepsis and septic shock. Acta Anaesthesiol Scand. 2015;59(5):561–7.

    Article  CAS  PubMed  Google Scholar 

  29. Lee J, de Louw E, Niemi M, Nelson R, Mark RG, Celi LA, et al. Association between fluid balance and survival in critically ill patients. J Intern Med. 2015;277(4):468–77 [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't].

    Article  CAS  PubMed  Google Scholar 

  30. Srinivasa S, Tan ST. Postoperative fluid management in major elective plastic surgery. J Plast Reconstr Aesthet Surg. 2010;63(6):992–5.

    Article  PubMed  Google Scholar 

  31. Acheampong A, Vincent JL. A positive fluid balance is an independent prognostic factor in patients with sepsis. Crit Care. 2015;19:251.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Marik P, Bellomo R. A rational approach to fluid therapy in sepsis. Br J Anaesth. 2016;116(3):339–49 [Review].

    Google Scholar 

  33. Polderman KH, Varon J. Do not drown the patient: Appropriate fluid management in critical illness. Am J Emerg Med. 2015;33(3):448–50.

    Article  PubMed  Google Scholar 

  34. Corcoran T, Rhodes JE, Clarke S, Myles PS, Ho KM. Perioperative fluid management strategies in major surgery: A stratified meta-analysis. Anesth Analg. 2012;114(3):640–51 [Comparative Study Meta-Analysis].

    Article  PubMed  Google Scholar 

  35. Jacob M, Chappell D, Rehm M. Perioperative fluid administration: Another form of "work-life balance". Anesthesiology. 2011;114(3):483–4 [Comment Editorial].

    Article  PubMed  Google Scholar 

  36. Lopes MR, Oliveira MA, Pereira VO, Lemos IP, Auler Jr JO, Michard F. Goal-directed fluid management based on pulse pressure variation monitoring during high-risk surgery: A pilot randomized controlled trial. Crit Care. 2007;11(5):R100 [Randomized Controlled Trial].

    Article  PubMed  PubMed Central  Google Scholar 

  37. Rocha LL, Pessoa CM, Correa TD, Pereira AJ, de Assuncao MS, Silva E. Current concepts on hemodynamic support and therapy in septic shock. Braz J Anesthesiol. 2015;65(5):395–402.

    Article  PubMed  Google Scholar 

  38. Woodcock TE, Woodcock TM. Revised starling equation and the glycocalyx model of transvascular fluid exchange: An improved paradigm for prescribing intravenous fluid therapy. Br J Anaesth. 2012;108(3):384–94 [Review].

    Article  CAS  PubMed  Google Scholar 

  39. Bruegger D, Rehm M, Jacob M, Chappell D, Stoeckelhuber M, Welsch U, et al. Exogenous nitric oxide requires an endothelial glycocalyx to prevent postischemic coronary vascular leak in guinea pig hearts. Crit Care. 2008;12(3):R73 [Research Support, Non-U.S. Gov't].

    Article  PubMed  PubMed Central  Google Scholar 

  40. Muller L, Jaber S, Molinari N, Favier L, Larche J, Motte G, et al. Fluid management and risk factors for renal dysfunction in patients with severe sepsis and/or septic shock. Crit Care. 2012;16(1):R34 [Multicenter Study].

    Article  PubMed  PubMed Central  Google Scholar 

  41. Saugel B, Cecconi M, Wagner JY, Reuter DA. Noninvasive continuous cardiac output monitoring in perioperative and intensive care medicine. Br J Anaesth. 2015;114(4):562–75 [Review].

    Article  CAS  PubMed  Google Scholar 

  42. Michard F. Stroke volume variation: From applied physiology to improved outcomes. Crit Care Med. 2011;39(2):402–3 [Comment Editorial].

    Article  PubMed  Google Scholar 

  43. Michard F. Volume management using dynamic parameters: The good, the bad, and the ugly. Chest. 2005;128(4):1902–3 [Comment Editorial].

    Article  PubMed  Google Scholar 

  44. Michard F. Using pulse oximetry waveform analysis to guide fluid therapy: Are we there yet? Anesth Analg. 2007;104(6):1606–7; author reply 1607–1609. [Comment Letter].

    Article  PubMed  Google Scholar 

  45. Valtier B, Cholley BP, Belot JP, de la Coussaye JE, Mateo J, Payen DM. Noninvasive monitoring of cardiac output in critically ill patients using transesophageal doppler. Am J Respir Crit Care Med. 1998;158(1):77–83 [Multicenter Study Research Support, Non-U.S. Gov't].

    Article  CAS  PubMed  Google Scholar 

  46. Horster S, Stemmler HJ, Sparrer J, Tischer J, Hausmann A, Geiger S. Mechanical ventilation with positive end-expiratory pressure in critically ill patients: Comparison of cw-doppler ultrasound cardiac output monitoring (uscom) and thermodilution (picco). Acta Cardiol. 2012;67(2):177–85.

    PubMed  Google Scholar 

  47. Keren H, Burkhoff D, Squara P. Evaluation of a noninvasive continuous cardiac output monitoring system based on thoracic bioreactance. Am J Physiol Heart Circ Physiol. 2007;293(1):H583–9 [Evaluation Studies Research Support, Non-U.S. Gov't].

    Article  CAS  PubMed  Google Scholar 

  48. Hayes MA, Yau EH, Timmins AC, Hinds CJ, Watson D. Response of critically ill patients to treatment aimed at achieving supranormal oxygen delivery and consumption. Relationship to outcome. Chest. 1993;103(3):886–95 [Comparative Study Research Support, Non-U.S. Gov't].

    Article  CAS  PubMed  Google Scholar 

  49. Gattinoni L, Carlesso E. Supporting hemodynamics: What should we target? What treatments should we use? Crit Care. 2013;17 Suppl 1:S4 [Review].

    Article  PubMed  PubMed Central  Google Scholar 

  50. Patel A, Laffan MA, Waheed U, Brett SJ. Randomised trials of human albumin for adults with sepsis: Systematic review and meta-analysis with trial sequential analysis of all-cause mortality. BMJ. 2014;349:g4561 [Meta-Analysis Research Support, Non-U.S. Gov't Review].

    Article  PubMed  PubMed Central  Google Scholar 

  51. Delaney AP, Dan A, McCaffrey J, Finfer S. The role of albumin as a resuscitation fluid for patients with sepsis: A systematic review and meta-analysis. Crit Care Med. 2011;39(2):386–91 [Comparative Study Meta-Analysis Research Support, Non-U.S. Gov't Review].

    Article  CAS  PubMed  Google Scholar 

  52. Jacob M, Rehm M, Loetsch M, Paul JO, Bruegger D, Welsch U, et al. The endothelial glycocalyx prefers albumin for evoking shear stress-induced, nitric oxide-mediated coronary dilatation. J Vasc Res. 2007;44(6):435–43 [Comparative Study Research Support, Non-U.S. Gov't].

    Article  CAS  PubMed  Google Scholar 

  53. Finfer S, Norton R, Bellomo R, Boyce N, French J, Myburgh J. The safe study: Saline vs. Albumin for fluid resuscitation in the critically ill. Vox Sang. 2004;87 Suppl 2:123–31 [Clinical Trial Multicenter Study Randomized Controlled Trial Retracted Publication].

    Article  PubMed  Google Scholar 

  54. Finfer S, McEvoy S, Bellomo R, McArthur C, Myburgh J, Norton R. Impact of albumin compared to saline on organ function and mortality of patients with severe sepsis. Intensive Care Med. 2011;37(1):86–96 [Comparative Study Randomized Controlled Trial Research Support, Non-U.S. Gov't].

    Article  PubMed  Google Scholar 

  55. Raghunathan K, Shaw A, Nathanson B, Sturmer T, Brookhart A, Stefan MS, et al. Association between the choice of iv crystalloid and in-hospital mortality among critically ill adults with sepsis*. Crit Care Med. 2014;42(7):1585–91 [Multicenter Study Research Support, Non-U.S. Gov't].

    Article  CAS  PubMed  Google Scholar 

  56. Caironi P, Tognoni G, Masson S, Fumagalli R, Pesenti A, Romero M, et al. Albumin replacement in patients with severe sepsis or septic shock. N Engl J Med. 2014;370(15):1412–21 [Multicenter Study Randomized Controlled Trial Research Support, Non-U.S. Gov't].

    Article  CAS  PubMed  Google Scholar 

  57. Nadim MK, Durand F, Kellum JA, Levitsky J, O'Leary JG, Karvellas CJ, et al. Management of the critically ill patient with cirrhosis: A multidisciplinary perspective. J Hepatol. 2015;28.

    Google Scholar 

  58. Sort P, Navasa M, Arroyo V, Aldeguer X, Planas R, Ruiz-del-Arbol L, et al. Effect of intravenous albumin on renal impairment and mortality in patients with cirrhosis and spontaneous bacterial peritonitis. N Engl J Med. 1999;341(6):403–9 [Clinical Trial Randomized Controlled Trial Research Support, Non-U.S. Gov't].

    Article  CAS  PubMed  Google Scholar 

  59. Wilkes MM, Navickis RJ. Colloid use in the critically ill. Ann Intern Med. 2002;137(5 Part 1):370–1; author reply 370–371 [Comment Letter].

    Article  PubMed  Google Scholar 

  60. Malbrain ML, Marik PE, Witters I, Cordemans C, Kirkpatrick AW, Roberts DJ, et al. Fluid overload, de-resuscitation, and outcomes in critically ill or injured patients: A systematic review with suggestions for clinical practice. Anaesthesiol Intensive Ther. 2014;46(5):361–80 [Meta-Analysis Review].

    Article  PubMed  Google Scholar 

  61. Annane D, Siami S, Jaber S, Martin C, Elatrous S, Declere AD, et al. Effects of fluid resuscitation with colloids vs crystalloids on mortality in critically ill patients presenting with hypovolemic shock: The cristal randomized trial. JAMA. 2013;310(17):1809–17 [Comparative Study Multicenter Study Randomized Controlled Trial Research Support, Non-U.S. Gov't].

    Article  CAS  PubMed  Google Scholar 

  62. Bunn F, Trivedi D. Colloid solutions for fluid resuscitation. Cochrane Database Syst Rev. 2012;7, CD001319 [Meta-Analysis Research Support, Non-U.S. Gov't Review].

    Google Scholar 

  63. Myburgh JA, Finfer S, Bellomo R, Billot L, Cass A, Gattas D, et al. Hydroxyethyl starch or saline for fluid resuscitation in intensive care. N Engl J Med. 2012;367(20):1901–11 [Multicenter Study Randomized Controlled Trial Research Support, Non-U.S. Gov't].

    Article  CAS  PubMed  Google Scholar 

  64. Marik PE. Surviving sepsis guidelines and scientific evidence? J Intensive Care Med. 2011;26(3):201–2 [Case Reports].

    Article  PubMed  Google Scholar 

  65. Sloan EP, Koenigsberg MD, Philbin NB, Gao W. Diaspirin cross-linked hemoglobin infusion did not influence base deficit and lactic acid levels in two clinical trials of traumatic hemorrhagic shock patient resuscitation. J Trauma. 2010;68(5):1158–71 [Research Support, Non-U.S. Gov't].

    Article  PubMed  Google Scholar 

  66. Moore EE, Moore FA, Fabian TC, Bernard AC, Fulda GJ, Hoyt DB, et al. Human polymerized hemoglobin for the treatment of hemorrhagic shock when blood is unavailable: The USA multicenter trial. J Am Coll Surg. 2009;208(1):1–13 [Clinical Trial, Phase III Comparative Study Multicenter Study Randomized Controlled Trial].

    Article  PubMed  Google Scholar 

  67. Finfer S, Liu B, Taylor C, Bellomo R, Billot L, Cook D, et al. Resuscitation fluid use in critically ill adults: An international cross-sectional study in 391 intensive care units. Crit Care. 2010;14(5):R185 [Comparative Study Multicenter Study Research Support, Non-U.S. Gov't].

    Article  PubMed  PubMed Central  Google Scholar 

  68. Yunos NM, Bellomo R, Glassford N, Sutcliffe H, Lam Q, Bailey M. Chloride-liberal vs. Chloride-restrictive intravenous fluid administration and acute kidney injury: An extended analysis. Intensive Care Med. 2015;41(2):257–64.

    Article  CAS  PubMed  Google Scholar 

  69. Yunos NM, Bellomo R, Hegarty C, Story D, Ho L, Bailey M. Association between a chloride-liberal vs chloride-restrictive intravenous fluid administration strategy and kidney injury in critically ill adults. JAMA. 2012;308(15):1566–72 [Clinical Trial].

    Article  CAS  PubMed  Google Scholar 

  70. Wilcox CS. Regulation of renal blood flow by plasma chloride. J Clin Invest. 1983;71(3):726–35 [Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, P.H.S.].

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Young P, Bailey M, Beasley R, Henderson S, Mackle D, McArthur C, et al. Effect of a buffered crystalloid solution vs saline on acute kidney injury among patients in the intensive care unit: The split randomized clinical trial. JAMA. 2015;314(16):1701–10 [Research Support, Non-U.S. Gov't].

    Article  CAS  PubMed  Google Scholar 

  72. Shaw AD, Bagshaw SM, Goldstein SL, Scherer LA, Duan M, Schermer CR, et al. Major complications, mortality, and resource utilization after open abdominal surgery: 0.9% saline compared to plasma-lyte. Ann Surg. 2012;255(5):821–9 [Comparative Study Research Support, Non-U.S. Gov't].

    Article  PubMed  Google Scholar 

  73. Yunos NM, Bellomo R, Story D, Kellum J. Bench-to-bedside review: chloride in critical illness. Crit Care. 2010;14(4):226 [Review].

    Google Scholar 

  74. Waters JH, Gottlieb A, Schoenwald P, Popovich MJ, Sprung J, Nelson DR. Normal saline versus lactated ringer’s solution for intraoperative fluid management in patients undergoing abdominal aortic aneurysm repair: an outcome study. Anesth Anal. 2001;93(4):817–22 [Clinical Trial Comparative Study Randomized Controlled Trial Research Support, Non-U.S. Gov't].

    Google Scholar 

  75. Phillips CR, Vinecore K, Hagg DS, Sawai RS, Differding JA, Watters JM, et al. Resuscitation of haemorrhagic shock with normal saline vs. lactated ringer’s: effects on oxygenation, extravascular lung water and haemodynamics. Crit Care. 2009;13(2):R30 [Comparative Study Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.].

    Google Scholar 

  76. Yang J, Fier A, Carter Y, Liu G, Epling-Burnette PK, Bai F, et al. Liver injury during acute pancreatitis: the role of pancreatitis-associated ascitic fluid (PAAF), p38-MAPK, and caspase-3 in inducing hepatocyte apoptosis. J Gastrointest Surg. 2003;7(2):200–7; discussion 208 [Comparative Study Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Phillips MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Phillips, W. (2016). Case Scenario for Fluid Therapy in Septic Shock. In: Farag, E., Kurz, A. (eds) Perioperative Fluid Management. Springer, Cham. https://doi.org/10.1007/978-3-319-39141-0_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39141-0_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39139-7

  • Online ISBN: 978-3-319-39141-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics