Skip to main content

Evidence of Epigenetic Mechanisms Affecting Carotenoids

  • Chapter
  • First Online:
Carotenoids in Nature

Part of the book series: Subcellular Biochemistry ((SCBI,volume 79))

Abstract

Epigenetic mechanisms are able to regulate plant development by generating non-Mendelian allelic interactions. An example of these are the responses to environmenal stimuli that result in phenotypic variability and transgression amongst important crop traits. The need to predict phenotypes from genotypes to understand the molecular basis of the genotype-by-environment interaction is a research priority. Today, with the recent discoveries in the field of epigenetics, this challenge goes beyond analyzing how DNA sequences change. Here we review examples of epigenetic regulation of genes involved in carotenoid synthesis and degradation, cases in which histone- and/or DNA-methylation, and RNA silencing at the posttranscriptional level affect carotenoids in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alder A, Jamil M, Marzorati M, Bruno M, Vermathen M, Bigler P, Ghisla S, Bouwmeester H, Beyer P, Al-Babili S (2012) The path from beta-carotene to carlactone, a strigolactone-like plant hormone. Science 335(6074):1348–51

    Article  CAS  PubMed  Google Scholar 

  • Booker J, Auldridge M, Wills S, McCarty D, Klee H, Leyser O (2004) MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling molecule. Curr Biol 14:1232–1238

    Article  CAS  PubMed  Google Scholar 

  • Booker J, Sieberer T, Wright W, Williamson L, Willett B, Stirnberg S, Turnbull C, Srinivasan P, Goddard P, Leyser O (2005) MAX1 encodes a cytochrome P450 family member that acts downstream of MAX3/4 to produce a carotenoid-derived branch-inhibiting hormone. Dev Cell 8:443–449

    Article  CAS  PubMed  Google Scholar 

  • Cai S, Jiang G, Ye N, Chu Z, Xu X, Zhang J, Zhu G (2015) A Key ABA catabolic gene, OsABA8ox3, is involved in drought stress resistance in rice. Plos One 10(2):e0116646

    Article  PubMed  PubMed Central  Google Scholar 

  • Cardon G, Höhmann S, Klein J, Nettesheim K, Sardler H, Huijser P (1999) Molecular characterization of the Arabidopsis SBP-box genes. Gene 237:91–104

    Article  CAS  PubMed  Google Scholar 

  • Cazzonelli CI (2011) Carotenoids in nature: insights from plants and beyond. Funct Plant Biol 38:833–847

    Article  CAS  Google Scholar 

  • Cazzonelli CI, Cuttriss AJ, Cossetto SB, Pye W, Crisp P, Whelan J, Finnegan EJ, Turnbull C, Pogson BJ (2009a) Regulation of carotenoid composition and shoot branching in Arabidopsis by a chromatin modifying histone methyltransferase, SDG8. Plant Cell 21:39–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cazzonelli CI, Millar T, Finnegan EJ, Pogson BJ (2009b) Promoting gene expression in plants by permissive histone lysine methylation. Plant Signal Behav 4:484–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cazzonelli CI, Roberts AC, Carmody ME, Pogson BJ (2010) Transcriptional control of SET DOMAIN GROUP8 and CAROTENOID ISOMERASE during Arabidopsis development. Mol Plant 3:174–191

    Article  CAS  PubMed  Google Scholar 

  • Chinnusamy V, Gong Z, Zhu J (2008) Abscisic Acid-mediated Epigenetic processes in plant development and tress response. J Integr Plant Biol 50(10):1187–1195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiou C, Pan H, Chuang Y, Yeh K (2010) Differential expression of carotenoid-related genes determines diversified carotenoid coloration in floral tissues of Oncidium cultivars. Planta 232:937–948

    Article  CAS  PubMed  Google Scholar 

  • Choi SC, Lee S, Kim S, Lee Y, Liu C, Cao X, An G (2014) Trithorax Group protein Oryza sativa Trithorax1 controls flowering time in rice via interaction with early heading date3. Plant Physiol 164(3):1326–1337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuttriss AJ, Cazzonelli CI, Wurtzel ET, Pogson BJ (2011) Carotenoids. In: Rébeillé F, Douce R (eds) Biosynthesis of vitamins in plants. Advances in botanical research, vol 58. Elsevier, Amsterdam, pp 1–36

    Google Scholar 

  • Dellapenna D, Pogson B (2006) Vitamin Synthesis in plant: tocopherols and carotenoids. Annu Rev Plant Biol 57:711–738

    Article  CAS  PubMed  Google Scholar 

  • Ding Y, Avramova Z, Fromm M (2011) The Arabidopsis trithorax-like factor ATX1 functions in dehydration stress responses via ABA-dependent and ABA-independent pathways. Plant J 66(5):735–44

    Article  CAS  PubMed  Google Scholar 

  • Emami-Meybodi D (2013) Uncovering the molecular link between miR156.SPL15 and carotenoid accumulation in arabidopsis. University of western ontario – electronic thesis and dissertation repository. Paper 1672

    Google Scholar 

  • Eriksson EM, Bovy A, Manning K, Harrison L, Andrews J, De Silva J, Tucker GA, Seymour GB (2004) Effect of the Colorless nonripening mutation on cell wall biochemistry and gene expression during tomato fruit development and ripening. Plant Physiol 136(4):4184–4197

    Google Scholar 

  • Fu C, Sunkar R, Zhou C, Shen H, Zhang JY, Matts J, Wolf J, Mann DG, Stewart CN Jr, Tang Y, Wang ZY (2012) Overexpression of miR156 in switchgrass (Panicum virgatum L.) results in various morphological alterations and leads to improved biomass production. Plant Biotechnol J 10:443–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pagès V, Dun EA, Pillot JP, Letisse F, Matusova R, Danoun S, Portais JC, Bouwmeester H, Bécard G, Beveridge CA, Rameau C, Rochange SF (2008) Strigolactone inhibition of shoot branching. Nature 455:189–194

    Article  CAS  PubMed  Google Scholar 

  • Grimanelli D, Roudier F (2013) Epigenetics and development in plants: green light to convergent innovations. Curr Top Dev Biol 104:189–222

    Article  CAS  PubMed  Google Scholar 

  • Han Y, Wang X, Chen W, Dong M, Yuan W, Liu X, Shang F (2014) Differential expression of carotenoid-related genes determines diversified carotenoid coloration in flower petal of Osmanthus fragrans. Tree Genet Genomes 10:329–338

    Article  Google Scholar 

  • Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33:245–254

    Article  CAS  PubMed  Google Scholar 

  • Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53

    Article  CAS  PubMed  Google Scholar 

  • Kidner CA, Martienssen RA (2005) The developmental role of microRNA in plants. Curr Opin Plant Biol 8(1):38–44

    Article  CAS  PubMed  Google Scholar 

  • Kim SY, He Y, Jacob Y, Noh YS, Michaels S, Amasino R (2005) Establishment of the vernalization-responsive, winter-annual habit in Arabidopsis requires a putative histone H3 methyl transferase. Plant Cell 17:3301–3310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lister R, O’Malley RC, Tonti-filippini J, Gregory BD, Berry CC, Millar AH, Ecker JR (2009) Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133(3):523–536

    Article  Google Scholar 

  • Manning K, Tor M, Poole M, Hong Y, Thompson AJ, King GJ, Giovannoni JJ, Seymour GB (2006) A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat Genet 38(8):948–952

    Article  CAS  PubMed  Google Scholar 

  • Moran NA, Jarvik T (2010) Lateral transfer of genes from fungi underlies carotenoid production in Aphids. Science 328:624–627

    Article  CAS  PubMed  Google Scholar 

  • Nisar N, Li L, Lu S, Khin NC, Pogson BJ (2015) Carotenoid metabolism in plants. Mol Plant 8(1):68–82

    Article  CAS  PubMed  Google Scholar 

  • Offermann S, Peterhansel C (2014) Can we learn from heterosis and epigenetics to improve photosynthesis? Curr Opin Plant Biol 19:105–110

    Article  CAS  PubMed  Google Scholar 

  • Osorio S, Scossa F, Fernie AR (2013) Molecular regulation of fruit ripening. Front Plant Sci 4:198

    PubMed  PubMed Central  Google Scholar 

  • Park H, Kreunen SS, Cuttriss AJ, DellaPenna D, Pogson BJ (2002) Identification of the carotenoid isomerase provides insight into carotenoid biosynthesis, prolamellar body formation, and photomorphogenesis. Plant Cell 14:321–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pasquier C, Clément M, Dombrovsky A, Penaud S, Da Rocha M, Rancurel C, Ledger N, Capovilla M, Robichon A (2014) Environmentally selected aphid variants in clonality context display differential patterns of methylation in the genome. Plos One 9(12):e115022

    Article  PubMed  PubMed Central  Google Scholar 

  • Pien S, Fleury D, Mylne JS, Crevillen P, Inzé D, Avramova Z, Dean C, Grossniklaus U (2008) ARABIDOPSIS TRITHORAX1 dynamically regulates FLOWERING LOCUS C activation via histone 3 lysine-4 trimethylation. Plant Cell 20(3):580–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poethig RS (2013) Vegetative phase change and shoot maturation in plants. Curr Top Dev Biol 105:125–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quadrana L, Almeida J, Asís R, Duffy T, Dominguez PG, Bermúdez L, Conti G, Correa da silva JV, Peralta IE, Colot V, Asurmendi S, Fernie AR, Rossi M, Carrari F (2014) Natural occurring epialleles determine vitamin E accumulation in tomato fruits. Nat Commun 5:3027

    Article  CAS  PubMed  Google Scholar 

  • Rapp RA, Wendel JF (2005) Epigenetics and plant evolution. New Phytol 168:81–91

    Article  CAS  PubMed  Google Scholar 

  • Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP (2002) MicroRNAs in plants. Genes Dev 16:1616–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP (2002) Prediction of plant microRNA targets. Cell 110:513–520

    Article  CAS  PubMed  Google Scholar 

  • Robinson SJ, Tang LH, Mooney BA, McKay SJ, Clarke WE, Links MG, Karcz S, Regan S, Wu Y, Gruber YM, Cui D, Yu M, Parkin IAP (2009) An archived activation tagged population of Arabidopsis thaliana to facilitate forward genetics approaches. BMC Plant Biol 9(1):101

    Article  PubMed  PubMed Central  Google Scholar 

  • Ruiz-Sola M, Arbona V, Gómez-Cadenas A, Rodríguez-Concepción M, Rodríguez-Villalón A (2014) A root specific induction of carotenoid biosynthesis contributes to ABA production upon salt stress in arabidopsis. PLoS One 9(3):e90765. doi:10.1371/journal.pone.0090765

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D (2005) Specific effects of microRNAs on the plant transcriptome. Dev Cell 8:517–527

    Article  CAS  PubMed  Google Scholar 

  • Schwarz S, Grande AV, Bujdoso N, Saedler H, Huijser P (2008) The microRNA regulated SBP-box genes SPL9 and SPL15 control shoot maturation in Arabidopsis. Plant Mol Biol 67:183–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seymour G, Poole M, Manning K, King GJ (2008) Genetics and epigenetics of fruit development and ripening. Curr Opin Plant Biol 11:58–63

    Article  CAS  PubMed  Google Scholar 

  • Sheldon CC, Finnegan EJ, Rouse DT, Tadege M, Bagnall DJ, Helliwell CA, Peacock WJ, Dennis ES (2000) The control of flowering by vernalization. Curr Opin Plant Biol 3(5):418–22

    Article  CAS  PubMed  Google Scholar 

  • Shivaprasad PV, Dunn RM, Santos BA, Bassett A, Baulcombe DC (2012) Extraordinary transgressive phenotypes of hybrid tomato are influenced by epigenetics and small silencing RNAs. EMBO J 31:257–266

    Article  CAS  PubMed  Google Scholar 

  • Sorefan K, Booker J, Haurogné K, Goussot M, Bainbridge K, Foo E, Chatfield S, Ward S, Beveridge C, Rameau C, Leyser O (2003) MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching in Arabidopsis and pea. Genes Dev 17:1469–1474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thorstensen T, Grini PE, Aalen RB (2011) SET domain proteins in plant development. Biochim Biophys Acta 1809:407–420

    Article  CAS  PubMed  Google Scholar 

  • Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195–200

    Article  CAS  PubMed  Google Scholar 

  • Vallabhaneni R, Wurtzel ET (2009) Timing and biosynthetic potential for provitamin A accumulation in maize. Plant Physiol 150(2):562–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verhoeven KJ, Jansen JJ, van Dijk PJ, Biere A (2010) Stress-induced DNA methylation changes and their heritability in asexual dandelions. New Phytol 185:1108–1118

    Article  CAS  PubMed  Google Scholar 

  • Wei S, Yu B, Gruber MY, Khachatourians GG, Hegedus DD, Hannoufa A (2010) Enhanced seed carotenoid levels and branching in transgenic Brassica napus expressing the Arabidopsis miR156b gene. J Agric Food Chem 58:9572–9578

    Article  CAS  PubMed  Google Scholar 

  • Wei S, Gruber MY, Yu B, Gao M, Khachatourians G, Hegedus D, Parkin I, Hannoufa A (2012) Arabidopsis mutant sk156 reveals complex regulation of SPL15 in a miR156-controlled gene network. BMC Plant Biol 12:169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weigel D, Colot V (2012) Epialleles in plant evolution. Genome Biol 13(10):249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welsch R, Arango J, Bär C, Salazar B, Al-Babili S, Beltrán J, Chavarriaga P, Ceballos H, Tohme J, Beyer P (2010) Provitamin A accumulation in cassava (Manihot esculenta) roots driven by a single nucleotide polymorphism in a phytoene synthase gene. Plant Cell 22(10):3348–3356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie K, Shen J, Hou X, Yao J, Li X, Xiao J, Xiong L (2012) Gradual increase of miR156 regulates temporal expression changes of numerous genes during leaf development in rice. Plant Physiol 158:1382–1394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong S, Fei Z, Chen YR, Zheng Y, Huang M, Vrebalov J, McQuinn R, Gapper N, Liu B, Xiang J, Shao Y, Giovannoni JJ (2013) Single-base resolution methylomes of tomato fruit development reveal epigenome modifications associated with ripening. Nat Biotechnol 31(2):154–9

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacobo Arango .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Arango, J., Beltrán, J., Nuñez, J., Chavarriaga, P. (2016). Evidence of Epigenetic Mechanisms Affecting Carotenoids. In: Stange, C. (eds) Carotenoids in Nature. Subcellular Biochemistry, vol 79. Springer, Cham. https://doi.org/10.1007/978-3-319-39126-7_11

Download citation

Publish with us

Policies and ethics