Skip to main content

Carotenoid Distribution in Nature

  • Chapter
  • First Online:
Carotenoids in Nature

Part of the book series: Subcellular Biochemistry ((SCBI,volume 79))

Abstract

Carotenoids are naturally occurring red, orange and yellow pigments that are synthesized by plants and some microorganisms and fulfill many important physiological functions. This chapter describes the distribution of carotenoid in microorganisms, including bacteria, archaea, microalgae, filamentous fungi and yeasts. We will also focus on their functional aspects and applications, such as their nutritional value, their benefits for human and animal health and their potential protection against free radicals. The central metabolic pathway leading to the synthesis of carotenoids is described as the three following principal steps: (i) the synthesis of isopentenyl pyrophosphate and the formation of dimethylallyl pyrophosphate, (ii) the synthesis of geranylgeranyl pyrophosphate and (iii) the synthesis of carotenoids per se, highlighting the differences that have been found in several carotenogenic organisms and providing an evolutionary perspective. Finally, as an example, the synthesis of the xanthophyll astaxanthin is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbes M, Baati H, Guermazi S et al (2013) Biological properties of carotenoids extracted from Halobacterium halobium isolated from a Tunisian solar saltern. BMC Complement Altern Med 13:255

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Abdel-Aal E-SM, Akhtar H, Zaheer K et al (2013) Dietary sources of lutein and zeaxanthin carotenoids and their role in eye health. Nutrients 5:1169–1185

    Article  CAS  PubMed Central  Google Scholar 

  • Ahmed F, Fanning K, Netzel M et al (2014) Profiling of carotenoids and antioxidant capacity of microalgae from subtropical coastal and brackish waters. Food Chem 165:300–306

    Article  CAS  PubMed  Google Scholar 

  • Ajikumar PK, Tyo K, Carlsen S et al (2008) Terpenoids: opportunities for biosynthesis of natural product drugs using engineered microorganisms. Mol Pharm 5:167–190

    Article  CAS  PubMed  Google Scholar 

  • Alcaino J, Barahona S, Carmona M et al (2008) Cloning of the cytochrome p450 reductase (crtR) gene and its involvement in the astaxanthin biosynthesis of Xanthophyllomyces dendrorhous. BMC Microbiol 8:169

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alcaino J, Fuentealba M, Cabrera R et al (2012) Modeling the interfacial interactions between CrtS and CrtR from Xanthophyllomyces dendrorhous, a P450 system involved in astaxanthin production. J Agric Food Chem 60:8640–8647

    Article  CAS  PubMed  Google Scholar 

  • Alcaino J, Romero I, Niklitschek M et al (2014) Functional characterization of the Xanthophyllomyces dendrorhous farnesyl pyrophosphate synthase and geranylgeranyl pyrophosphate synthase encoding genes that are involved in the synthesis of isoprenoid precursors. PLoS One 9:e96626

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alvarez V, Rodriguez-Saiz M, de la Fuente JL et al (2006) The crtS gene of Xanthophyllomyces dendrorhous encodes a novel cytochrome-P450 hydroxylase involved in the conversion of beta-carotene into astaxanthin and other xanthophylls. Fungal Genet Biol 43:261–272

    Article  CAS  PubMed  Google Scholar 

  • Amaretti A, Simone M, Quarteri A et al (2014) Isolation of carotenoid-producing yeasts from an Alpine glacier. Chem Eng Trans 38:217–222

    Google Scholar 

  • Andrewes AG, Starr MP (1976) (3R, 3′R)-astaxanthin from the yeast Phaffia rhodozyma. Phytochemistry 15:1009–1011

    Article  CAS  Google Scholar 

  • Arrach N, Fernandez-Martin R, Cerda-Olmedo E et al (2001) A single gene for lycopene cyclase, phytoene synthase, and regulation of carotene biosynthesis in Phycomyces. Proc Natl Acad Sci U S A 98:1687–1692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asker D, Beppu T, Ueda K (2007a) Zeaxanthinibacter enoshimensis gen. nov., sp. nov., a novel zeaxanthin-producing marine bacterium of the family Flavobacteriaceae, isolated from seawater off Enoshima Island, Japan. Int J Syst Evol Microbiol 57:837–843

    Article  CAS  PubMed  Google Scholar 

  • Asker D, Beppu T, Ueda K (2007b) Mesoflavibacter zeaxanthinifaciens gen. nov., sp. nov., a novel zeaxanthin-producing marine bacterium of the family Flavobacteriaceae. Syst Appl Microbiol 30:291–296

    Article  CAS  PubMed  Google Scholar 

  • Avalos J, Díaz-Sánchez V, García-Martínez J et al (2014) Chapter 8: carotenoids. In: Martín JF, García-Estrada C, Zeilinger S (eds) Biosynthesis and molecular genetics of fungal secondary metabolites. Springer, New York, pp 149–185

    Chapter  Google Scholar 

  • Avalos J, Limón MC (2014) Biological roles of fungal carotenoids. Curr Genet. doi:10.1007/s00294. doi:10.1007/s00014

  • Barkley SJ, Cornish RM, Poulter CD (2004) Identification of an Archaeal Type II Isopentenyl Diphosphate Isomerase in Methanothermobacter thermautotrophicus. J Bacteriol 186:1811–1817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • BCC-Research (2011) The global market for carotenoids. Report code: FOD025D. http://www.bccresearch.com/pressroom/fod/global-carotenoids-market-reach-$1.4-billion-2018. Accessed 19 May 2016

  • Berthelot K, Estevez Y, Deffieux A et al (2012) Isopentenyl diphosphate isomerase: a checkpoint to isoprenoid biosynthesis. Biochimie 94:1621–1634

    Article  CAS  PubMed  Google Scholar 

  • Bhosale P, Bernstein PS (2004) Beta-carotene production by Flavobacterium multivorum in the presence of inorganic salts and urea. J Ind Microbiol Biotechnol 31:565–571

    Article  CAS  PubMed  Google Scholar 

  • Bhosale P, Bernstein PS (2005) Microbial xanthophylls. Appl Microbiol Biotechnol 68:445–455

    Article  CAS  PubMed  Google Scholar 

  • Blasco F, Kauffmann I, Schmid RD (2004) CYP175A1 from Thermus thermophilus HB27, the first beta-carotene hydroxylase of the P450 superfamily. Appl Microbiol Biotechnol 64:671–674

    Article  CAS  PubMed  Google Scholar 

  • Bona-Lovasz J, Bona A, Ederer M et al (2013) A rapid method for the extraction and analysis of carotenoids and other hydrophobic substances suitable for systems biology studies with photosynthetic bacteria. Metabolites 3:912–930

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bories G, Brantom P, Brufau de Barberà J et al (2007) Safety and efficacy of Panaferd-AX (red carotenoid-rich bacterium Paracoccus carotinifaciens) as feed additive for salmon and trout. Eur Food Saf Authority J 546:1–30

    Google Scholar 

  • Brandt W, Brauer L, Gunnewich N et al (2009) Molecular and structural basis of metabolic diversity mediated by prenyldiphosphate converting enzymes. Phytochemistry 70:1758–1775

    Article  CAS  PubMed  Google Scholar 

  • Britton G (1995) Structure and properties of carotenoids in relation to function. FASEB J 9:1551–1558

    CAS  PubMed  Google Scholar 

  • Britton G (1998) Chapter 2: overview of carotenoid biosynthesis. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids. Volume 3: biosynthesis and metabolism. Birkhäuser Verlag, Basel, pp 13–148

    Google Scholar 

  • Britton G (2008a) Chapter 15: functions of carotenoids metabolites and breakdown products. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids. Volume 4: natural functions. Birkhäuser Verlag, Basel, pp 309–324

    Google Scholar 

  • Britton G (2008b) Chapter 10: functions of intact carotenoids. In: Britton G, Pfander H, Liaaen-Jensen S (eds) Carotenoids. Volume 4: natural functions. Birkhäuser Verlag, Basel, pp 189–212

    Google Scholar 

  • Britton G, Liaaen-Jensen S, Pfander H (2004) Carotenoids: handbook. Springer, Berlin

    Book  Google Scholar 

  • Brown SR (1968) Bacterial carotenoids from freshwater sediments. Limnol Oceanogr 13:233–241

    Article  CAS  Google Scholar 

  • Campenni’ L, Nobre BP, Santos CA et al (2013) Carotenoid and lipid production by the autotrophic microalga Chlorella protothecoides under nutritional, salinity, and luminosity stress conditions. Appl Microbiol Biotechnol 97:1383–1393

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Li F, Wurtzel ET (2010) Isolation and characterization of the Z-ISO gene encoding a missing component of carotenoid biosynthesis in plants. Plant Physiol 153:66–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cunningham FXJ, Gantt E (2011) Elucidation of the pathway to astaxanthin in the flowers of Adonis aestivalis. Plant Cell 23:3055–3069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Souza SE, Altekar W, D’Souza SF (1997) Adaptive response of Haloferax mediterranei to low concentrations of NaCl (<20 %) in the growth medium. Arch Microbiol 168:68–71

    Article  PubMed  Google Scholar 

  • Degtyarenko KN, Archakov AI (1993) Molecular evolution of P450 superfamily and P450-containing monooxygenase systems. FEBS Lett 332:1–8

    Article  CAS  PubMed  Google Scholar 

  • Dieser M, Greenwood M, Foreman CM (2010) Carotenoid pigmentation in Antarctic Heterotrophic Bacteria as a Strategy to Withstand Environmental Stresses. Arct Antarct Alp Res 42:396–405

    Article  Google Scholar 

  • Dobrowolska A (2006) Molecular view on the carotenogenesis in plants-a mini review. Pol J Food Nutr Sci 15:385

    CAS  Google Scholar 

  • Dong JZ, Wang SH, Ai XR et al (2013) Composition and characterization of cordyxanthins from Cordyceps militaris fruit bodies. J Funct Food 5:1450–1455

    Article  CAS  Google Scholar 

  • Echavarri-Erasun C, Johnson EA (2002) Fungal carotenoids. In: (eds) 2. pp 45–85

    Google Scholar 

  • Estabrook RW (2003) A passion for P450s (remembrances of the early history of research on cytochrome P450). Drug Metab Dispos 31:1461–1473

    Article  CAS  PubMed  Google Scholar 

  • Estrada AF, Youssar L, Scherzinger D et al (2008) The ylo‐1 gene encodes an aldehyde dehydrogenase responsible for the last reaction in the Neurospora carotenoid pathway. Mol Microbiol 69:1207–1220

    Article  CAS  PubMed  Google Scholar 

  • Fong NJC, Burgess ML, Barrow KD et al (2001) Carotenoid accumulation in the psychrotrophic bacterium Arthrobacter agilis in response to thermal and salt stress. Appl Microbiol Biotechnol 56:750–756

    Article  CAS  PubMed  Google Scholar 

  • Fraser PD, Bramley PM (2004) The biosynthesis and nutritional uses of carotenoids. Prog Lipid Res 43:228–265

    Article  CAS  PubMed  Google Scholar 

  • Frengova GI, Beshkova DM (2009) Carotenoids from Rhodotorula and Phaffia: yeasts of biotechnological importance. J Ind Microbiol Biotechnol 36:163–180

    Article  CAS  PubMed  Google Scholar 

  • Gao Y, Honzatko RB, Peters RJ (2012) Terpenoid synthase structures: a so far incomplete view of complex catalysis. Nat Prod Rep 29:1153–1175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodwin TW (1972) Carotenoids in fungi and non-photosynthetic bacteria. Prog Ind Microbiol 11:29–88

    CAS  PubMed  Google Scholar 

  • Goodwin TW (1984) The biochemistry of carotenoids, vol. II animals. Chapman Hall, New York

    Book  Google Scholar 

  • Gotz D, Paytubi S, Munro S et al (2007) Responses of hyperthermophilic crenarchaea to UV irradiation. Genome Biol 8:R220

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grochowski LL, Xu H, White RH (2006) Methanocaldococcus jannaschii uses a modified mevalonate pathway for biosynthesis of isopentenyl diphosphate. J Bacteriol 188:3192–3198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gruszecki WI, Strzalka K (2005) Carotenoids as modulators of lipid membrane physical properties. Biochim Biophys Acta 1740:108–115

    Article  CAS  PubMed  Google Scholar 

  • Guerin M, Huntley ME, Olaizola M (2003) Haematococcus astaxanthin: applications for human health and nutrition. Trends Biotechnol 21:210–216

    Article  CAS  PubMed  Google Scholar 

  • Hameed A, Arun AB, Ho HP et al (2011) Supercritical carbon dioxide micronization of zeaxanthin from moderately thermophilic bacteria Muricauda lutaonensis CC-HSB-11 T. J Agric Food Chem 59:4119–4124

    Article  CAS  PubMed  Google Scholar 

  • Haxo F (1950) Carotenoids of the mushroom Cantharellus cinnabarinus. Bot Gaz 112:228–232

    Article  CAS  Google Scholar 

  • Higuera-Ciapara I, Felix-Valenzuela L, Goycoolea FM (2006) Astaxanthin: a review of its chemistry and applications. Crit Rev Food Sci Nutr 46:185–196

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Xu X, Song P et al (2013) Draft Genome Sequence of Deinococcus xibeiensis R13, a New Carotenoid-Producing Strain. Genome Announc 1:e00987-13

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang J, Zhong Y, Sandmann G et al (2012) Cloning and selection of carotenoid ketolase genes for the engineering of high-yield astaxanthin in plants. Planta 236:691–699

    Article  CAS  PubMed  Google Scholar 

  • Inoue K (2004) Carotenoid hydroxylation-P450 finally! Trends Plant Sci 9:515–517

    Article  CAS  PubMed  Google Scholar 

  • Isaacson T, Ohad I, Beyer P et al (2004) Analysis in vitro of the enzyme CRTISO establishes a poly-cis-carotenoid biosynthesis pathway in plants. Plant Physiol 136:4246–4255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jensen SL, Cohen-Bazire G, Nakayama TOM et al (1958) The path of carotenoid synthesis in a photosynthetic bacterium. Biochim Biophys Acta 29:477–498

    Article  CAS  PubMed  Google Scholar 

  • Kaneda K, Kuzuyama T, Takagi M et al (2001) An unusual isopentenyl diphosphate isomerase found in the mevalonate pathway gene cluster from Streptomyces sp. strain CL190. Proc Natl Acad Sci U S A 98:932–937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanehisa M, Goto S, Sato Y et al (2014) Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res 42:D199–D205

    Article  CAS  PubMed  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J, DellaPenna D (2006) Defining the primary route for lutein synthesis in plants: the role of Arabidopsis carotenoid beta-ring hydroxylase CYP97A3. Proc Natl Acad Sci U S A 103:3474–3479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J, Smith JJ, Tian L et al (2009) The evolution and function of carotenoid hydroxylases in Arabidopsis. Plant Cell Physiol 50:463–479

    Article  CAS  PubMed  Google Scholar 

  • Krubasik P, Sandmann G (2000) Molecular evolution of lycopene cyclases involved in the formation of carotenoids with ionone end groups. Biochem Soc Trans 28:806–809

    Article  CAS  PubMed  Google Scholar 

  • Kuzuyama T, Hemmi H, Takahashi S (2010) Chapter 12: mevalonate pathway in bacteria and Archaea. In: Editors-In-Chief: Mander LL, H-W., Volume 1: edited by Townsend CE, Y (eds) Comprehensive natural products II: chemistry and biology. Volume 1: natural products structural diversity-I secondary metabolites: organization and biosynthesis. Elsevier Science, Oxford, pp 493–514

    Google Scholar 

  • Lamers PP, Janssen M, De Vos RC et al (2012) Carotenoid and fatty acid metabolism in nitrogen-starved Dunaliella salina, a unicellular green microalga. J Biotechnol 162:21–27

    Article  CAS  PubMed  Google Scholar 

  • Lamers PP, van de Laak CC, Kaasenbrood PS et al (2010) Carotenoid and fatty acid metabolism in light-stressed Dunaliella salina. Biotechnol Bioeng 106:638–648

    Article  CAS  PubMed  Google Scholar 

  • Lange BM, Rujan T, Martin W et al (2000) Isoprenoid biosynthesis: the evolution of two ancient and distinct pathways across genomes. Proc Natl Acad Sci U S A 97:13172–13177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laupitz R, Hecht S, Amslinger S et al (2004) Biochemical characterization of Bacillus subtilis type II isopentenyl diphosphate isomerase, and phylogenetic distribution of isoprenoid biosynthesis pathways. Eur J Biochem 271:2658–2669

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Kim YS, Choi TJ et al (2004) Paracoccus haeundaensis sp. nov., a Gram-negative, halophilic, astaxanthin-producing bacterium. Int J Syst Evol Microbiol 54:1699–1702

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Kim YT (2006) Cloning and characterization of the astaxanthin biosynthesis gene cluster from the marine bacterium Paracoccus haeundaensis. Gene 370:86–95

    Article  CAS  PubMed  Google Scholar 

  • Lemee L, Peuchant E, Clerc M (1997) Deinoxanthin: A New Carotenoid Isolated from Deinococcus radiodurans. Tetrahedron 53:919–926

    Article  CAS  Google Scholar 

  • Lemoine Y, Schoefs B (2010) Secondary ketocarotenoid astaxanthin biosynthesis in algae: a multifunctional response to stress. Photosynth Res 106:155–177

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Sun M, Li Q et al (2012) Profiling of carotenoids in six microalgae (Eustigmatophyceae) and assessment of their beta-carotene productions in bubble column photobioreactor. Biotechnol Lett 34:2049–2053

    Article  CAS  PubMed  Google Scholar 

  • Lichtenthaler HK (2000) Non-mevalonate isoprenoid biosynthesis: enzymes, genes and inhibitors. Biochem Soc Trans 28:785–789

    Article  CAS  PubMed  Google Scholar 

  • Lombard J, Moreira D (2011) Origins and early evolution of the mevalonate pathway of isoprenoid biosynthesis in the three domains of life. Mol Biol Evol 28:87–99

    Article  CAS  PubMed  Google Scholar 

  • Lu S, Li L (2008) Carotenoid metabolism: biosynthesis, regulation, and beyond. J Integr Plant Biol 50:778–785

    Article  CAS  PubMed  Google Scholar 

  • Mandelli F, Miranda VS, Rodrigues E et al (2012) Identification of carotenoids with high antioxidant capacity produced by extremophile microorganisms. World J Microbiol Biotechnol 28:1781–1790

    Article  CAS  PubMed  Google Scholar 

  • Maresca JA, Graham JE, Wu M et al (2007) Identification of a fourth family of lycopene cyclases in photosynthetic bacteria. Proc Natl Acad Sci U S A 104:11784–11789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marshall CP, Leuko S, Coyle CM et al (2007) Carotenoid analysis of halophilic archaea by resonance Raman spectroscopy. Astrobiology 7:631–643

    Article  CAS  PubMed  Google Scholar 

  • Martin JF, Gudina E, Barredo JL (2008) Conversion of beta-carotene into astaxanthin: Two separate enzymes or a bifunctional hydroxylase-ketolase protein? Microb Cell Fact 7:3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mata-Gomez LC, Montanez JC, Mendez-Zavala A et al (2014) Biotechnological production of carotenoids by yeasts: an overview. Microb Cell Fact 13:12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McLean KJ, Sabri M, Marshall KR et al (2005) Biodiversity of cytochrome P450 redox systems. Biochem Soc Trans 33:796–801

    Article  CAS  PubMed  Google Scholar 

  • Miki W (1991) Biological functions and activities of animal carotenoids. Pure Appl Chem 63:141–146

    Article  CAS  Google Scholar 

  • Miller MW, Yoneyam M, Soneda M (1976) Phaffia, a new yeast genus in the Deuteromycotina (Blastomycetes). Int J Syst Evol Microbiol 26:286–291

    Google Scholar 

  • Misawa N, Satomi Y, Kondo K et al (1995) Structure and functional analysis of a marine bacterial carotenoid biosynthesis gene cluster and astaxanthin biosynthetic pathway proposed at the gene level. J Bacteriol 177:6575–6584

    CAS  PubMed  PubMed Central  Google Scholar 

  • Misawa N (2010) Chapter 20: carotenoids. In: Editors-In-Chief: Mander LL, H-W, Volume 1: edited by Townsend CE, Y (eds) Comprehensive natural products II: chemistry and biology. Volume 1: natural products structural diversity-I secondary metabolites: organization and biosynthesis. Elsevier Science, Oxford, pp 733–752

    Google Scholar 

  • Miziorko HM (2011) Enzymes of the mevalonate pathway of isoprenoid biosynthesis. Arch Biochem Biophys 505:131–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mochimaru M, Masukawa H, Maoka T et al (2008) Substrate specificities and availability of fucosyltransferase and beta-carotene hydroxylase for myxol 2’-fucoside synthesis in Anabaena sp. strain PCC 7120 compared with Synechocystis sp. strain PCC 6803. J Bacteriol 190:6726–6733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moran NA, Jarvik T (2010) Lateral transfer of genes from fungi underlies carotenoid production in aphids. Science 328:624–627

    Article  CAS  PubMed  Google Scholar 

  • Nakase T, Takematsu A, Yamada Y (1993) Molecular approaches to the taxonomy of ballistosporous yeasts based on the analysis of the partial nucleotide sequences of 18S ribosomal ribonucleic acids. J Gen Appl Microbiol 39:107–134

    Article  CAS  Google Scholar 

  • Naziri D, Hamidi M, Hassanzadeh S et al (2014) Analysis of Carotenoid Production by Halorubrum sp. TBZ126; an Extremely Halophilic Archeon from Urmia Lake. Adv Pharm Bull 4:61–67

    CAS  PubMed  Google Scholar 

  • Nelson MA, Morelli G, Carattoli A et al (1989) Molecular cloning of a Neurospora crassa carotenoid biosynthetic gene (albino-3) regulated by blue light and the products of the white collar genes. Mol Cell Biol 9:1271–1276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohnuma S, Hirooka K, Ohto C et al (1997) Conversion from Archaeal Geranylgeranyl Diphosphate Synthase to Farnesyl Diphosphate Synthase: Two Amino Acids Before the First Apartate-Rich Motif Solely Determine Eukaryotic Farnesyl Diphosphate Synthase Activity. J Biol Chem 272:5192–5198

    Article  CAS  PubMed  Google Scholar 

  • Ojima K, Breitenbach J, Visser H et al (2006) Cloning of the astaxanthin synthase gene from Xanthophyllomyces dendrorhous (Phaffia rhodozyma) and its assignment as a beta-carotene 3-hydroxylase/4-ketolase. Mol Genet Genomics 275:148–158

    Article  CAS  PubMed  Google Scholar 

  • Park JS, Chyun JH, Kim YK et al (2010) Astaxanthin decreased oxidative stress and inflammation and enhanced immune response in humans. Nutr Metab (Lond) 7:18

    Article  CAS  Google Scholar 

  • Prabhu S, Rekha PD, Young CC et al (2013) Zeaxanthin production by novel marine isolates from coastal sand of India and its antioxidant properties. Appl Biochem Biotechnol 171:817–831

    Article  CAS  PubMed  Google Scholar 

  • ProCarDB, PCD (2014) List of prokaryotic orgnanisms who are known to have carotenoids. http://bioinfo.imtech.res.in/servers/procardb/?c=aboutus&m=organismlist. Accessed 19 May 2016

  • Renstrøm B, Berger H, Liaaen-Jensen S (1981) Esterified, optical pure (3S, 3′S)-astaxanthin from flowers of Adonis annua. Biochem Syst Ecol 9:249–250

    Article  Google Scholar 

  • Saito K, Fujisaki S, Nishino T (2007) Short-chain prenyl diphosphate synthase that condenses isopentenyl diphosphate with dimethylallyl diphosphate in ispA null Escherichia coli strain lacking farnesyl diphosphate synthase. J Biosci Bioeng 103:575–577

    Article  CAS  PubMed  Google Scholar 

  • Sandmann G (2009) Evolution of carotene desaturation: the complication of a simple pathway. Arch Biochem Biophys 483:169–174

    Article  CAS  PubMed  Google Scholar 

  • Schiedt K (1998) Chapter 7: absorption and metabolism of carotenoids in birds, fish and crustaceans. In: Britton G, Liaaen-Jensen S, Pfander H (eds) Carotenoids. Volume 3: biosynthesis and metabolism. Birkhäuser Verlag, Basel, pp 285–358

    Google Scholar 

  • Schmidhauser TJ, Lauter FR, Russo VE et al (1990) Cloning, sequence, and photoregulation of al-1, a carotenoid biosynthetic gene of Neurospora crassa. Mol Cell Biol 10:5064–5070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidhauser TJ, Lauter FR, Schumacher M et al (1994) Characterization of al-2, the phytoene synthase gene of Neurospora crassa. Cloning, sequence analysis, and photoregulation. J Biol Chem 269:12060–12066

    CAS  PubMed  Google Scholar 

  • Schmidt AD, Heinekamp T, Matuschek M et al (2005) Analysis of mating-dependent transcription of Blakeslea trispora carotenoid biosynthesis genes carB and carRA by quantitative real-time PCR. Appl Microbiol Biotechnol 67:549–555

    Article  CAS  PubMed  Google Scholar 

  • Schmidt I, Schewe H, Gassel S et al (2011) Biotechnological production of astaxanthin with Phaffia rhodozyma/Xanthophyllomyces dendrorhous. Appl Microbiol Biotechnol 89:555–571

    Article  CAS  PubMed  Google Scholar 

  • Shahina M, Hameed A, Lin SY et al (2013) Sphingomicrobium astaxanthinifaciens sp. nov., an astaxanthin-producing glycolipid-rich bacterium isolated from surface seawater and emended description of the genus Sphingomicrobium. Int J Syst Evol Microbiol 63:3415–3422

    Article  CAS  PubMed  Google Scholar 

  • Shahmohammadi HR, Asgarani E, Terato H et al (1998) Protective roles of bacterioruberin and intracellular KCl in the resistance of Halobacterium salinarium against DNA-damaging agents. J Radiat Res 39:251–262

    Article  CAS  PubMed  Google Scholar 

  • Shindo K, Kikuta K, Suzuki A et al (2007) Rare carotenoids, (3R)-saproxanthin and (3R,2’S)-myxol, isolated from novel marine bacteria (Flavobacteriaceae) and their antioxidative activities. Appl Microbiol Biotechnol 74:1350–1357

    Article  CAS  PubMed  Google Scholar 

  • Shindo K, Misawa N (2014) New and rare carotenoids isolated from marine bacteria and their antioxidant activities. Mar Drugs 12:1690–1698

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sieiro C, Poza M, de Miguel T et al (2003) Genetic basis of microbial carotenogenesis. Int Microbiol 6:11–16

    CAS  PubMed  Google Scholar 

  • Silva C, Cabral JMS, Van Keulen F (2004) Isolation of a β-carotene over-producing soil bacterium, Sphingomonas sp. Biotechnol Lett 26:257–262

    Article  CAS  PubMed  Google Scholar 

  • Singh D, Puri M, Wilkens S et al (2013) Characterization of a new zeaxanthin producing strain of Chlorella saccharophila isolated from New Zealand marine waters. Bioresour Technol 143:308–314

    Article  CAS  PubMed  Google Scholar 

  • Smit A, Mushegian A (2000) Biosynthesis of Isoprenoids via Mevalonate in Archaea: The Lost Pathway. Genome Res 10:1468–1484

    Article  CAS  PubMed  Google Scholar 

  • Steiger S, Jackisch Y, Sandmann G (2005) Carotenoid biosynthesis in Gloeobacter violaceus PCC4721 involves a single crtI-type phytoene desaturase instead of typical cyanobacterial enzymes. Arch Microbiol 184:207–214

    Article  CAS  PubMed  Google Scholar 

  • Tagua VG, Medina HR, Martín-Domínguez R et al (2012) A gene for carotene cleavage required for pheromone biosynthesis and carotene regulation in the fungus Phycomyces blakesleeanus. Fungal Genet Biol 49:398–404

    Article  CAS  PubMed  Google Scholar 

  • Takaichi S (2011) Carotenoids in algae: distributions, biosyntheses and functions. Mar Drugs 9:1101–1118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takaichi S (2013) Tetraterpenes: carotenoids. In: Ramawat KG, Mérillon J-M (eds) Natural products. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 3251–3283

    Chapter  Google Scholar 

  • Takatani N, Nishida K, Sawabe T et al (2014) Identification of a novel carotenoid, 2’-isopentenylsaproxanthin, by Jejuia pallidilutea strain 11shimoA1 and its increased production under alkaline condition. Appl Microbiol Biotechnol 98:6633–6640

    Article  CAS  PubMed  Google Scholar 

  • Tao L, Wilczek J, Odom JM et al (2006) Engineering a β-carotene ketolase for astaxanthin production. Metab Eng 8:523–531

    Article  CAS  PubMed  Google Scholar 

  • Tian L, DellaPenna D (2004) Progress in understanding the origin and functions of carotenoid hydroxylases in plants. Arch Biochem Biophys 430:22–29

    Article  CAS  PubMed  Google Scholar 

  • Tian L, Musetti V, Kim J et al (2004) The Arabidopsis LUT1 locus encodes a member of the cytochrome p450 family that is required for carotenoid epsilon-ring hydroxylation activity. Proc Natl Acad Sci U S A 101:402–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tisch D, Schmoll M (2010) Light regulation of metabolic pathways in fungi. Appl Microbiol Biotechnol 85:1259–1277

    Article  CAS  PubMed  Google Scholar 

  • Tritsch D, Hemmerlin A, Bach TJ et al (2010) Plant isoprenoid biosynthesis via the MEP pathway: in vivo IPP/DMAPP ratio produced by (E)-4-hydroxy-3-methylbut-2-enyl diphosphate reductase in tobacco BY-2 cell cultures. FEBS Lett 584:129–134

    Article  CAS  PubMed  Google Scholar 

  • Tuteja N (2007) Abscisic Acid and abiotic stress signaling. Plant Signal Behav 2:135–138

    Article  PubMed  PubMed Central  Google Scholar 

  • Ukibe K, Hashida K, Yoshida N et al (2009) Metabolic engineering of Saccharomyces cerevisiae for astaxanthin production and oxidative stress tolerance. Appl Environ Microbiol 75:7205–7211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Umeno D, Tobias AV, Arnold FH (2005) Diversifying carotenoid biosynthetic pathways by directed evolution. Microbiol Mol Biol Rev 69:51–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valadon LRG (1964) Carotenoid pigments of some lower Ascomycetes. J Exp Bot 15:219–224

    Article  CAS  Google Scholar 

  • Valadon LRG (1976) Carotenoids as additional taxonomic characters in fungi: a review. Trans Br Mycol Soc 67:1–15

    Article  Google Scholar 

  • van den Brink HM, van Gorcom RF, van den Hondel CA et al (1998) Cytochrome P450 enzyme systems in fungi. Fungal Genet Biol 23:1–17

    Article  PubMed  Google Scholar 

  • Vandermoten S, Haubruge E, Cusson M (2009) New insights into short-chain prenyltransferases: structural features, evolutionary history and potential for selective inhibition. Cell Mol Life Sci 66:3685–3695

    Article  CAS  PubMed  Google Scholar 

  • Vannice JC, Skaff DA, Keightley A et al (2014) Identification in Haloferax volcanii of phosphomevalonate decarboxylase and isopentenyl phosphate kinase as catalysts of the terminal enzyme reactions in an archaeal alternate mevalonate pathway. J Bacteriol 196:1055–1063

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Velayos A, Eslava AP, Iturriaga EA (2000) A bifunctional enzyme with lycopene cyclase and phytoene synthase activities is encoded by the carRP gene of Mucor circinelloides. Eur J Biochem 267:5509–5519

    Article  CAS  PubMed  Google Scholar 

  • Verdoes JC, Krubasik KP, Sandmann G et al (1999) Isolation and functional characterisation of a novel type of carotenoid biosynthetic gene from Xanthophyllomyces dendrorhous. Mol Gen Genet 262:453–461

    Article  CAS  PubMed  Google Scholar 

  • Vidhyavathi R, Venkatachalam L, Sarada R et al (2008) Regulation of carotenoid biosynthetic genes expression and carotenoid accumulation in the green alga Haematococcus pluvialis under nutrient stress conditions. J Exp Bot 59:1409–1418

    Article  CAS  PubMed  Google Scholar 

  • Vranova E, Coman D, Gruissem W (2013) Network analysis of the MVA and MEP pathways for isoprenoid synthesis. Annu Rev Plant Biol 64:665–700

    Article  CAS  PubMed  Google Scholar 

  • Wang B, Lin L, Lu L et al (2012) Optimization of β-carotene production by a newly isolated Serratia marcescens strain. Electron J Biotechnol 15:3

    Google Scholar 

  • Wang X, Willen R, Wadstrom T (2000) Astaxanthin-rich algal meal and vitamin C inhibit Helicobacter pylori infection in BALB/cA mice. Antimicrob Agents Chemother 44:2452–2457

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Liu Z, Qin S (2013) Effects of iron on fatty acid and astaxanthin accumulation in mixotrophic Chromochloris zofingiensis. Biotechnol Lett 35:351–357

    Article  CAS  PubMed  Google Scholar 

  • Wichuk K, Brynjolfsson S, Fu W (2014) Biotechnological production of value-added carotenoids from microalgae: emerging technology and prospects. Bioengineered 5:204–208

    Article  PubMed  PubMed Central  Google Scholar 

  • World Health Organization, WHO (2014) Nutrition: micronutrient deficiencies. http://www.who.int/nutrition/topics/vad/en/. Accessed 19 May 2016

  • Yang T, Sun J, Lian T et al (2014) Process optimization for extraction of carotenoids from medicinal caterpillar fungus, Cordyceps militaris (Ascomycetes). Int J Med Mushrooms 16:125–135

    Google Scholar 

  • Yasui Y, Hosokawa M, Mikami N et al (2011) Dietary astaxanthin inhibits colitis and colitis-associated colon carcinogenesis in mice via modulation of the inflammatory cytokines. Chem Biol Interact 193:79–87

    Article  CAS  PubMed  Google Scholar 

  • Yatsunami R, Ando A, Yang Y et al (2014) Identification of carotenoids from the extremely halophilic archaeon Haloarcula japonica. Front Microbiol 5:100

    Article  PubMed  PubMed Central  Google Scholar 

  • Yokoyama A, Adachi K, Shizuri Y (1995) New carotenoid glucosides, astaxanthin glucoside and adonixanthin glucoside, isolated from the astaxanthin-producing marine bacterium, Agrobacterium aurantiacum. J Nat Prod 58:1929–1933

    Article  CAS  Google Scholar 

  • Yokoyama A, Miki W (1995) Composition and presumed biosynthetic pathway of carotenoids in the astaxanthin-producing bacterium Agrobacterium aurantiacum. FEMS Microbiol Lett 128:139–144

    Article  CAS  Google Scholar 

  • Yokoyama A, Miki W, Izumida H et al (1996) New trihydroxy-keto-carotenoids isolated from an astaxanthin-producing marine bacterium. Biosci Biotechnol Biochem 60:200–203

    Article  CAS  PubMed  Google Scholar 

  • Zalokar M (1957) Isolation of an acidic pigment in Neurospora. Arch Biochem Biophys 70:568–571

    Article  CAS  PubMed  Google Scholar 

  • Zheng YT, Toyofuku M, Nomura N et al (2013) Correlation of carotenoid accumulation with aggregation and biofilm development in Rhodococcus sp. SD-74. Anal Chem 85:7295–7301

    Article  CAS  PubMed  Google Scholar 

  • Zhu C, Gerjets T, Sandmann G (2007) Nicotiana glauca engineered for the production of ketocarotenoids in flowers and leaves by expressing the cyanobacterial crtO ketolase gene. Transgenic Res 16:813–821

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by Fondecyt grant 11121200 and INACH grant RG_07-12 to JA, Fondecyt grant 1130333 to MB and Fondecyt grant 1140504 to VC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jennifer Alcaíno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Alcaíno, J., Baeza, M., Cifuentes, V. (2016). Carotenoid Distribution in Nature. In: Stange, C. (eds) Carotenoids in Nature. Subcellular Biochemistry, vol 79. Springer, Cham. https://doi.org/10.1007/978-3-319-39126-7_1

Download citation

Publish with us

Policies and ethics