Skip to main content

Overview of Optimization Problems in Electric Car-Sharing System Design and Management

  • Chapter
  • First Online:
Dynamic Perspectives on Managerial Decision Making

Abstract

Car-sharing systems are increasingly employing environmentally-friendly electric vehicles. The design and management of Ecar-sharing systems poses several additional challenges with respect to those based on traditional combustion vehicles, mainly related with the limited autonomy allowed by current battery technology. We review the main optimization problems arising in Ecar-sharing systems at strategic, tactical and operational levels, and discuss the existing approaches often developed for similar problems, for example in car-sharing systems with traditional vehicles. We also outline open problems and fruitful research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almuhtady, A., Lee, S., Romeijn, E., Wynblatt, M., & Ni, J. (2014). A degradation-informed battery-swapping policy for fleets of electric or hybrid-electric vehicles. Transportation Science, 48(4), 609–618. doi:10.1287/trsc.2013.0494.

    Article  Google Scholar 

  • Arslan, O., Yıldız, B., & Karasan, O. E. (2014). Minimum cost path problem for plug-in hybrid electric vehicles. Technical Report, Bilkent University, Department of Industrial Engineering, Bilkent, Ankara. http://www.optimization-online.org/DB_HTML/2014/02/4230.html.

    Google Scholar 

  • Artmeier, A., Haselmayr, J., Leucker, M., & Sachenbacher M. (2010). The optimal routing problem in the context of battery-powered electric vehicles. In Second International Workshop on Constraint Reasoning and Optimization for Computational Sustainability, Bologna, Italy.

    Google Scholar 

  • Asamer, J., Reinthaler, M., Ruthmair, M., Straub, M., & Puchinger, J. (2016). Optimizing charging station locations for urban taxi providers. Transportation Research Part A: Policy and Practice, 85, 233–246.

    Google Scholar 

  • Baouche, F., Billot, R., Trigui, R., & El Faouzi, N.-E. (2014). Efficient allocation of electric vehicles charging stations: Optimization model and application to a dense urban network. IEEE Intelligent Transportation Systems Magazine, 6(3), 33–43. ISSN 1939–1390, doi:10.1109/mits.2014.2324023.

    Google Scholar 

  • Barth, M., & Todd, M. (1999). Simulation model performance analysis of a multiple station shared vehicle system. Transportation Research Part C: Emerging Technologies, 7(4), 237–259. ISSN 0968-090X, doi:10.1016/s0968-090x(99)00021-2.

    Google Scholar 

  • Barth, M., Todd, M., & Xue, L. (2004). User-based vehicle relocation techniques for multiple-station shared-use vehicle systems. In Transportation Research Board, 80th Annual Meeting. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.360.8614.

  • Boyacı, B., Zografos, K. G., & Geroliminis, N. (2015). An optimization framework for the development of efficient one-way car-sharing systems. European Journal of Operational Research, 240(3), 718–IJ733. ISSN 0377-2217, doi:10.1016/j.ejor.2014.07.020.

    Google Scholar 

  • Bruglieri, M., Colorni, A., & Luè, A. (2014). The vehicle relocation problem for the one-way electric vehicle sharing: An application to the milan case. Procedia - Social and Behavioral Sciences, 111, 18–27. ISSN 1877-0428, doi:10.1016/j.sbspro.2014.01.034.

    Google Scholar 

  • Cassandras, C. G., Wang, T., & Pourazarm, S. (2014). Energy-aware vehicle routing in networks with charging nodes. Technical Report, Division of Systems Engineering and Center for Information and Systems Engineering, Boston University. http://arxiv.org/abs/1401.6478.

  • Cavadas, J., Correia, G. H., & Gouveia, J. (2015). A mip model for locating slow-charging stations for electric vehicles in urban areas accounting for driver tours. Transportation Research Part E: Logistics and Transportation Review, 75, 188–201. ISSN 1366-5545, doi:10.1016/j.tre.2014.11.005.

    Google Scholar 

  • Cepolina, E. M., & Farina, A. (2012). A new shared vehicle system for urban areas. Transportation Research Part C: Emerging Technologies, 21(1), 230–243. ISSN 0968-090X, doi:10.1016/j.trc.2011.10.005.

    Google Scholar 

  • Chen, C., & Hua, G. (2014). Optimal deployment of electric vehicle charging and battery swapping stations based on gas station network. International Journal of Control and Automation, 7(5), 247–258. http://www.paper.edu.cn/en_releasepaper/downPaper/201401-450.

    Article  Google Scholar 

  • Chen, T. D., Kockelman, K. M., & Khan, M. (2013). The electric vehicle charging station location problem: a parking-based assignment method for Seattle. In 92nd Annual Meeting of the Transportation Research Board. Washington DC, USA. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.300.2883.

  • Clarke, G., & Wright, J. W. (1964). Scheduling of vehicles from a central depot to a number of delivery points. Operations Research, 12(4), 568–581.

    Article  Google Scholar 

  • Clemente, M., Fanti, M. P., Mangini, A. M., & Ukovich, W. (2013). The vehicle relocation problem in car sharing systems: Modeling and simulation in a petri net framework. Lecture Notes in Computer Science, 7927, 250–269. ISSN 1611-3349, doi:10.1007/978-3-642-38697-8_14.

    Google Scholar 

  • Correia, G. H., & Antunes, A. P. (2012). Optimization approach to depot location and trip selection in one-way carsharing systems. Transportation Research Part E: Logistics and Transportation Review, 48(1), 233–247. ISSN 1366-5545, doi:10.1016/j.tre.2011.06.003.

    Google Scholar 

  • Correia, G. H., Jorge, D. R., & Antunes, D. M. (2014). The added value of accounting for users’ flexibility and information on the potential of a station-based one-way car-sharing system: An application in Lisbon, Portugal. Journal of Intelligent Transportation Systems, 18,(3), 299–308. ISSN 1547-2442, doi:10.1080/15472450.2013.836928.

    Google Scholar 

  • Desaulniers, G., Errico, F., Irnich, S., & Schneider, M. (2014). Exact algorithms for electric vehicle-routing problems with time windows. Technical Report, Darmstadt Technical University.

    Google Scholar 

  • Drexl, M., & Schneider, M. (2015). A survey of variants and extensions of the location-routing problem. European Journal of Operational Research, 241(2), 283–308. ISSN 0377-2217, doi:10.1016/j.ejor.2014.08.030.

    Google Scholar 

  • Eisner, J., Funke, S., & Storandt, S. (2011). Optimal route planning for electric vehicles in large networks. In 25th AAAI Conference on Artificial Intelligence. https://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3637.

  • Erdoğan, S., & Miller-Hooks, E. (2012). A green vehicle routing problem. Transportation Research Part E: Logistics and Transportation Review, 48(1), 100–114. ISSN 1366-5545, doi:10.1016/j.tre.2011.08.001.

    Google Scholar 

  • Fassi, A. E., Awasthi, A., & Viviani, M. (2012). Evaluation of carsharing network’s growth strategies through discrete event simulation. Expert Systems with Applications, 39(8), 6692–6705. ISSN 0957-4174, doi:10.1016/j.eswa.2011.11.071.

    Google Scholar 

  • Felipe, Á., Ortuño, M. T., Righini, G., & Tirado, G. (2014). A heuristic approach for the green vehicle routing problem with multiple technologies and partial recharges. Transportation Research Part E: Logistics and Transportation Review, 71(0), 111–128. ISSN 1366-5545, doi:10.1016/j.tre.2014.09.003.

    Google Scholar 

  • Frade, I., Ribeiro, A., Gonçalves, G., & Antunes, A. P. (2011). Optimal location of charging stations for electric vehicles in a neighborhood in Lisbon, Portugal. Transportation Research Record: Journal of the Transportation Research Board, 2252, 91–98. ISSN 0361-1981, doi:10.3141/2252-12.

    Google Scholar 

  • Frank, S., Preis, H., & Nachtigall, K. (2014). On the modeling of recharging stops in context of vehicle routing problems. In D. Huisman, I. Louwerse, & A. P. Wagelmans, (Eds.), Operations Research Proceedings 2013. Operations Research Proceedings (pp. 129–135). New York: Springer Science + Business Media. doi:10.1007/978-3-319-07001-8_18.

    Google Scholar 

  • Ge, S., Feng, L., & Liu, H. (2011). The planning of electric vehicle charging station based on grid partition method. In 2011 International Conference on Electrical and Control Engineering (ICECE). IEEE. ISBN http://id.crossref.org/isbn/978-1-4244-8162-0, doi:10.1109/iceceng.2011.6057636.

  • Goeke, D., & Schneider, M. (2015). Routing a mixed fleet of electric and conventional vehicles. European Journal of Operational Research, 245(1), 81–99.

    Article  Google Scholar 

  • González, J., Alvaro, R., Gamallo, C., Fuentes, M., Fraile-Ardanuy, J., Knapen, L., et al. (2014). Determining electric vehicle charging point locations considering drivers’ daily activities. Procedia Computer Science, 32(0), 647–654. ISSN 1877-0509, doi:10.1016/j.procs.2014.05.472. http://www.sciencedirect.com/science/article/pii/S1877050914006723; The 5th International Conference on Ambient Systems, Networks and Technologies (ANT-2014), the 4th International Conference on Sustainable Energy Information Technology (SEIT-2014).

    Google Scholar 

  • Hess, A., Malandrino, F., Reinhardt, M. B., Casetti, C., Hummel, K. A., & Barceló-Ordinas, J. M. (2012). Optimal deployment of charging stations for electric vehicular networks. In Proceedings of the First Workshop on Urban Networking, UrbaNe ’12 (pp. 1–6). New York: ACM. ISBN 978-1-4503-1781-8, doi:10.1145/2413236.2413238.

    Chapter  Google Scholar 

  • Hiermann, G., Puchinger, J., & Hartl R. F. (2014). The electric fleet size and mix vehicle routing problem with time windows and recharging stations. Technical Report, Austrian Institute of Technology.

    Google Scholar 

  • Jorge, D., & Correia, G. H. (2013). Carsharing systems demand estimation and defined operations: a literature review. European Journal of Transport and Infrastructure Research, 13(3), 201–220. http://www.ejtir.tudelft.nl/issues/2013_03/pdf/2013_03_02.pdf.

    Google Scholar 

  • Jorge, D., Correia, G. H., & Barnhart, C. (2014). Comparing optimal relocation operations with simulated relocation policies in one-way carsharing systems. IEEE Transactions on Intelligent Transportation Systems, 15(4), 1667–1675. ISSN 1558-0016, doi:10.1109/tits.2014.2304358.

    Google Scholar 

  • Kek, A. G., Cheu, R. L., & Chor, M. (2006). Relocation simulation model for multiple-station shared-use vehicle systems. Transportation Research Record, 1986(1), 81–88. ISSN 0361-1981, doi:10.3141/1986-13.

    Google Scholar 

  • Kek, A. G., Cheu, R. L., Meng, Q., & Fung, C. H. (2009). A decision support system for vehicle relocation operations in carsharing systems. Transportation Research Part E: Logistics and Transportation Review, 45(1), 149–158. ISSN 1366-5545, doi:10.1016/j.tre.2008.02.008.

    Google Scholar 

  • Kempton, W., Tomic, J., Letendre, S., Brooks, A., & Lipman, T. (2001). Vehicle-to-grid power: Battery, hybrid, and fuel cell vehicles as resources for distributed electric power in California. Technical Report UCD-ITS-RR-01-03, University of Delaware.

    Google Scholar 

  • Kitamura, R. (2002). Sharing electric vehicles in kyoto: Kyoto public car system. {IATSS} Research, 26(1), 86–89 (2002). ISSN 0386-1112, doi:10.1016/S0386-1112(14)60085-6, http://www.sciencedirect.com/science/article/pii/S0386111214600856.

    Google Scholar 

  • Lee, J., & Park, G.-L. (2013). Planning of relocation staff operations in electric vehicle sharing systems. In Lecture Notes in Computer Science (Vol. 7803, pp. 256–265). New York: Springer Science + Business Media. ISBN http://id.crossref.org/isbn/978-3-642-36543-0, doi:10.1007/978-3-642-36543-0_27.

    Google Scholar 

  • Li, J.-Q. (2014). Transit bus scheduling with limited energy. Transportation Science, 48(4), 521–539. doi:10.1287/trsc.2013.0468.

    Article  Google Scholar 

  • Lin, C., Choy, K., Ho, G., Chung, S., & Lam, H. (2014). Survey of green vehicle routing problem: Past and future trends. Expert Systems with Applications, 41(4, Part 1), 1118–1138. ISSN 0957-4174, doi:10.1016/j.eswa.2013.07.107.

    Google Scholar 

  • Luè, A., Colorni, A., Nocerino, R., & Paruscio, V. (2012). Green move: An innovative electric vehicle-sharing system. Procedia - Social and Behavioral Sciences, 48(0), 2978–2987. ISSN 1877-0428, doi:10.1016/j.sbspro.2012.06.1265, http://www.sciencedirect.com/science/article/pii/S187704281203008X; Transport Research Arena 2012.

    Google Scholar 

  • Mak, H.-Y., Rong, Y., & Shen, Z.-J. M. (2013). Infrastructure planning for electric vehicles with battery swapping. Management Science, 59(7), 1557–1575. doi:10.1287/mnsc.1120.1672, http://dx.doi.org/10.1287/mnsc.1120.1672.

    Article  Google Scholar 

  • Millard-Ball, A., Murray, G., Ter Schure, J., Fox, C., & Burkhardt, J. (2005). Carsharing: Where and how it succeeds. Technical Report TCRP Report 108, TRB, Washington D.C.

    Google Scholar 

  • Miller, C. E., Tucker, A. W., & Zemlin, R. A. (1960). Integer programming formulation of traveling salesman problems. Journal of the ACM, 7(4), 326–329.

    Article  Google Scholar 

  • Nagy, G., & Salhi, S. (2007). Location-routing: Issues, models and methods. European Journal of Operational Research, 177(2), 649–672. ISSN 0377-2217, doi:10.1016/j.ejor.2006.04.004.

    Google Scholar 

  • Nair, R., & Miller-Hooks, E. (2011). Fleet management for vehicle sharing operations. Transportation Science, 45(4), 524–540. ISSN 1526-5447, doi:10.1287/trsc.1100.0347.

    Google Scholar 

  • Nakayama, S., Yamamoto, T., & Kitamura, R. (2002). Simulation analysis for the management of an electric vehicle-sharing system: Case of the kyoto public-car system. Transportation Research Record, 1791(1), 99–104. ISSN 0361-1981, doi:10.3141/1791-15.

    Google Scholar 

  • Pelletier, S., Jabali, O., & Laporte, G. (2014). Battery electric vehicles for goods distribution: A survey of vehicle technology, market penetration, incentives and practices. Technical Report, CIRRELT, Montréal, Canada.

    Google Scholar 

  • Pelletier, S., Jabali, O., & Laporte, G. (2016). 50th anniversary invited article—goods distribution with electric vehicles: review and research perspectives. Transportation Science, 50(1), 3–22.

    Article  Google Scholar 

  • Preis, H., Frank, S., & Nachtigall, K. (2013). Energy-optimized routing of electric vehicles in urban delivery systems. In S. Helber, M. Breitner, D. Rösch, C. Schön, J.-M. Graf von der Schulenburg, P. Sibbertsen, et al. (Eds.), Operations Research Proceedings 2012. Operations Research Proceedings (pp. 583–588). New York: Springer Science + Business Media. doi:10.1007/978-3-319-00795-3_87.

    Google Scholar 

  • Prodhon, C., & Prins, C. (2014). A survey of recent research on location-routing problems. European Journal of Operational Research, 238(1), 1–17. ISSN 0377-2217, doi:10.1016/j.ejor.2014.01.005.

    Google Scholar 

  • Sachenbacher, M., Leucker, M., Artmeier, A., & Haselmayr, J. (2011). Efficient energy-optimal routing for electric vehicles. In 25th AAAI Conference on Artificial Intelligence. https://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/view/3735.

  • Schmöller, S., & Bogenberger, K. (2014). Analyzing external factors on the spatial and temporal demand of car sharing systems. Procedia - Social and Behavioral Sciences, 111, 8–17. ISSN 1877-0428, doi:10.1016/j.sbspro.2014.01.033.

    Google Scholar 

  • Schneider, M., Stenger, A., & Goeke, D. (2014). The electric vehicle-routing problem with time windows and recharging stations. Transportation Science, 48(4), 500–520. ISSN 1526-5447, doi:10.1287/trsc.2013.0490.

    Google Scholar 

  • Sellmair, R., & Hamacher, T. (2014). Method of optimization for the infrastructure of charging station for electric taxis. In Proceedings of the 93rd Annual Meeting of the Transportation Research Board.

    Google Scholar 

  • Shaheen, S., Sperling, D., & Wagner, C. (1998). Carsharing in Europe and North America: Past, present and future. Transportation Quarterly, 52(3), 35–52.

    Google Scholar 

  • Stillwater, T., Mokhtarian, P., & Shaheen, S. (2009). Carsharing and the built environment: A GIS-based study of one U.S. operator. Transportation Research Record, 2110, 27–34. http://www.its.ucdavis.edu/wp-content/themes/ucdavis/pubs/download_pdf.php?id=1503.

    Article  Google Scholar 

  • Van Duin, J., Tavasszy, L. A., & Quak, H. (2013). Towards e(lectric)-urban freight: First promising steps in the electric vehicle revolution. European Transport / Trasporti Europei, 54(9), 1–19. Published online.

    Google Scholar 

  • Wang, Y.-W., & Lin, C.-C. (2013). Locating multiple types of recharging stations for battery-powered electric vehicle transport. Transportation Research Part E: Logistics and Transportation Review, 58, 76–87. ISSN 1366-5545, doi:10.1016/j.tre.2013.07.003.

    Google Scholar 

  • Wang, H., Huang, Q., Zhang, C., & Xia, A. A novel approach for the layout of electric vehicle charging station. In The 2010 International Conference on Apperceiving Computing and Intelligence Analysis Proceeding. IEEE. ISBN http://id.crossref.org/isbn/978-1-4244-8025-8, doi:10.1109/icacia.2010.5709852.

  • Worley, O., Klabjan, D., & Sweda, T. M. (2012). Simultaneous vehicle routing and charging station siting for commercial electric vehicles. In 2012 IEEE International Electric Vehicle Conference. IEEE. ISBN http://id.crossref.org/isbn/978-1-4673-1562-3, doi:10.1109/ievc.2012.6183279.

  • Xu, K., Yi, P., & Kandukuri, Y. (2013). Location selection of charging stations for battery electric vehicles in an urban area. International Journal of Engineering Research and Science & Technology, 2(3), 15–23. http://www.ijerst.com/ijerstadmin/upload/IJEETC_51ffe12fbeda5.pdf.

    Google Scholar 

  • Yang, J., & Sun, H. (2014). Battery swap station location-routing problem with capacitated electric vehicles. Computers & Operations Research, 55, 217–232. ISSN 0305-0548, doi:10.1016/j.cor.2014.07.003.

    Google Scholar 

Download references

Acknowledgements

This research is performed within the European project e4-share (Models for Ecological, Economical, Efficient, Electric Car-Sharing) funded by FFG (Austria) under grant 847350, INNOVIRIS (Belgium) and MIUR (Italy) via the Joint Programme Initiative Urban Europe. See http://www.univie.ac.at/e4-share/ for more details. The authors are indebted to two anonymous referees for their useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniele Vigo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Brandstätter, G. et al. (2016). Overview of Optimization Problems in Electric Car-Sharing System Design and Management. In: Dawid, H., Doerner, K., Feichtinger, G., Kort, P., Seidl, A. (eds) Dynamic Perspectives on Managerial Decision Making. Dynamic Modeling and Econometrics in Economics and Finance, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-319-39120-5_24

Download citation

Publish with us

Policies and ethics