Skip to main content

Effects of Additive Noise on the Stability of Glacial Cycles

  • Chapter
  • First Online:
  • 916 Accesses

Part of the book series: Springer INdAM Series ((SINDAMS,volume 15))

Abstract

It is well acknowledged that the sequence of glacial-interglacial cycles is paced by the astronomical forcing. However, how much is the sequence robust against natural fluctuations associated, for example, with the chaotic motions of atmosphere and oceans? In this article, the stability of the glacial-interglacial cycles is investigated on the basis of simple conceptual models. Specifically, we study the influence of additive white Gaussian noise on the sequence of the glacial cycles generated by stochastic versions of several low-order dynamical system models proposed in the literature. In the original deterministic case, the models exhibit different types of attractors: a quasiperiodic attractor, a piecewise continuous attractor, strange nonchaotic attractors, and a chaotic attractor. We show that the combination of the quasiperiodic astronomical forcing and additive fluctuations induces a form of temporarily quantised instability. More precisely, climate trajectories corresponding to different noise realizations generally cluster around a small number of stable or transiently stable trajectories present in the deterministic system. Furthermore, these stochastic trajectories may show sensitive dependence on very small amounts of perturbations at key times. Consistently with the complexity of each attractor, the number of trajectories leaking from the clusters may range from almost zero (the model with a quasiperiodic attractor) to a significant fraction of the total (the model with a chaotic attractor), the models with strange nonchaotic attractors being intermediate. Finally, we discuss the implications of this investigation for research programmes based on numerical simulators.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In the following, 1 ka = 1,000 years and 1 Ma = 1,000 ka.

References

  1. Abe-Ouchi, A., Saito, F., Kawamura, K., Raymo, M.E., Okuno, J., Takahashi, K., Blatter, H.: Insolation-driven 100,000-year glacial cycles and hysteresis of ice-sheet volume. Nature 500 (7461), 190–193 (2013). doi:10.1038/nature12374

    Article  Google Scholar 

  2. Arnold, L.: Random Dynamical Systems. Springer Monographs in Mathematics. Springer, Berlin/Heidelberg (1998) doi:10.1007/978-3-662-12878-7

    Book  MATH  Google Scholar 

  3. Ashkenazy, Y.: The role of phase locking in a simple model for glacial dynamics. Clim. Dyn. 27, 421–431 (2006). doi:10.1007/s00382-006-0145-5

    Article  Google Scholar 

  4. Benzi, R., Parisi, G., Sutera, A., Vulpiani, A.: Stochastic resonance in climatic change. Tellus 34 (1), 10–16 (1982). doi:10.1111/j.2153-3490.1982.tb01787.x

    Article  MATH  Google Scholar 

  5. Berger, A.: Support for the astronomical theory of climatic change. Nature 268, 44–45 (1977). doi:10.1038/269044a0

    Article  Google Scholar 

  6. Berger, A.: Milankovitch theory and climate. Rev. Geophys. 26 (4), 624–657 (1988)

    Article  Google Scholar 

  7. Berger, A., Loutre, M.: Insolation values for the climate of the last 10 million years. Quat. Sci. Rev. 10 (4), 297–317 (1991). doi:10.1016/0277-3791(91)90033-Q

    Article  Google Scholar 

  8. Berger, A., Loutre, M.F.: Origine des fréquences des éléments astronomiques intervenant dans l’insolation. Bull. Classe des Sci. 1–3, 45–106 (1990)

    Google Scholar 

  9. Berger, A., Loutre, M.F.: Precession, eccentricity, obliquity, insolation and paleoclimates. In: Duplessy, J.C., Spyridakis, M.T. (eds.) Long-Term Climatic Variations. NATO ASI Series, vol. 122, pp. 107–151. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  10. Berger, A., Melice, J.L., Loutre, M.F.: On the origin of the 100-kyr cycles in the astronomical forcing. Paleoceanography 20 (PA4019) (2005). doi:10.1029/2005PA001173

    Google Scholar 

  11. Berger, A.L.: Long-term variations of daily insolation and Quaternary climatic changes. J. Atmos. Sci. 35, 2362–2367 (1978). doi:10.1175/1520-0469(1978)035¡2362: LTVODI¿2.0.CO;2

    Google Scholar 

  12. Bolton, E.W., Maasch, K.A., Lilly, J.M.: A wavelet analysis of plio-pleistocene climate indicators – a new view of periodicity evolution. Geophys. Res. Lett. 22 (20), 2753–2756 (1995). doi:10.1029/95GL02799

    Article  Google Scholar 

  13. Broecker, W.S., van Donk, J.: Insolation changes, ice volumes and the O18 record in deep-sea cores. Rev. Geophys. 8 (1), 169–198 (1970). doi:10.1029/RG008i001p00169

    Article  Google Scholar 

  14. Calov, R., Ganopolski, A., Claussen, M., Petoukhov, V., Greve, R.: Transient simulation of the last glacial inception. Part I: glacial inception as a bifurcation in the climate system. Clim. Dyn. 24 (6), 545–561 (2005). doi:10.1007/s00382-005-0007-6

    Google Scholar 

  15. Crucifix, M.: How can a glacial inception be predicted? The Holocene 21 (5), 831–842 (2011). doi:10.1177/0959683610394883

    Article  Google Scholar 

  16. Crucifix, M.: Oscillators and relaxation phenomena in pleistocene climate theory. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 370 (1962), 1140–1165 (2012). doi:10.1098/rsta.2011.0315. http://rsta.royalsocietypublishing.org/content/370/1962/1140.abstract

    Article  Google Scholar 

  17. Crucifix, M.: Why could ice ages be unpredictable? Clim. Past 9 (5), 2253–2267 (2013).doi:10.5194/cp-9-2253-2013

    Article  Google Scholar 

  18. Daruka, I., Ditlevsen, P.: A conceptual model for glacial cycles and the middle pleistocene transition. Clim. Dyn. 1–12 (2015). http://dx.doi.org/10.1007/s00382-015-2564-7

  19. De Saedeleer, B., Crucifix, M., Wieczorek, S.: Is the astronomical forcing a reliable and unique pacemaker for climate? A conceptual model study. Clim. Dyn. 40, 273–294 (2013). doi:10.1007/s00382-012-1316-1

    Google Scholar 

  20. Ditlevsen, P.: Observation of α-stable noise induced millennial climate changes from an ice-core record. Geophys. Res. Lett. 26 (10), 1441–1444 (1999). doi:10.1029/1999GL900252

    Article  Google Scholar 

  21. Ditlevsen, P.D.: Bifurcation structure and noise-assisted transitions in the Pleistocene glacial cycles. Paleoceanography 24, PA3204 (2009). doi:10.1029/2008PA001673

    Article  Google Scholar 

  22. Eckhardt, B., Yao, D.: Local Lyapunov exponents in chaotic systems. Phys. D Nonlinear Phenom. 65 (1–2), 100–108 (1993). doi:10.1016/0167-2789(93)90007-N

    Article  MathSciNet  MATH  Google Scholar 

  23. Feudel, U., Kuznetsov, S., Pikovsky, A.: Strange Nonchaotic Attractors: Dynamics Between Order And Chaos in Quasiperiodically Forced Systems. World Scientific Series on Nonlinear Science, Series A Series. World Scientific (2006). http://books.google.be/books?id=zptIMMkI2kEC

  24. Gallée, H., van Ypersele, J.P., Fichefet, T., Marsiat, I., Tricot, C., Berger, A.: Simulation of the last glacial cycle by a coupled, sectorially averaged climate-ice sheet model. Part II: response to insolation and CO2 variation. J. Geophys. Res. 97, 15713–15740 (1992). doi:10.1029/92JD01256

    Google Scholar 

  25. Ganopolski, A., Brovkin, V., Calov, R.: Robustness of quaternary glacial cycles. Geophys. Res. Abstr. 17, EGU2015–7197–1 (2015)

    Google Scholar 

  26. Ganopolski, A., Calov, R.: Simulation of glacial cycles with an earth system model. In: Berger, A., Mesinger, F., Sijacki, D. (eds.) Climate Change: Inferences from Paleoclimate and Regional Aspects, pp. 49–55. Springer, Vienna (2012). doi:10.1007/978-3-7091-0973-1_3

    Chapter  Google Scholar 

  27. Gildor, H., Tziperman, E.: A sea ice climate switch mechanism for the 100-kyr glacial cycles. J. Geophys. Res. (Oceans) 106, 9117–9133 (2001)

    Google Scholar 

  28. Grebogi, C., Ott, E., Pelikan, S., Yorke, J.A.: Strange attractors that are not chaotic. Phys. D Nonlinear Phenom. 13 (1–2), 261–268 (1984). doi:10.1016/0167-2789(84)90282-3

    Article  MathSciNet  MATH  Google Scholar 

  29. Greiner, A., Strittmatter, W., Honerkamp, J.: Numerical integration of stochastic differential equations. J. Stat. Phys. 51 (1–2), 95–108 (1988). doi:10.1007/BF01015322

    Article  MathSciNet  MATH  Google Scholar 

  30. Hargreaves, J.C., Annan, J.D.: Assimilation of paleo-data in a simple Earth system model. Clim. Dyn. 19, 371–381 (2002). doi:10.1007/s00382-002-0241-0

    Article  Google Scholar 

  31. Hasselmann, K.: Stochastic climate models part I. Theory. Tellus 28 (6), 473–485 (1976). doi:10.1111/j.2153-3490.1976.tb00696.x

    Article  Google Scholar 

  32. Hays, J.D., Imbrie, J., Shackleton, N.J.: Variations in the Earth’s orbit: pacemaker of ice ages. Science 194, 1121–1132 (1976). doi:10.1126/science.194.4270.1121

    Article  Google Scholar 

  33. Huybers, P.: Pleistocene glacial variability as a chaotic response to obliquity forcing. Clim. Past 5 (3), 481–488 (2009). doi:10.5194/cp-5-481-2009

    Article  Google Scholar 

  34. Huybers, P., Wunsch, C.: Obliquity pacing of the late Pleistocene glacial terminations. Nature 434, 491–494 (2005). doi:10.1038/nature03401

    Article  Google Scholar 

  35. Imbrie, J., Berger, A., Boyle, E.A., Clemens, S.C., Duffy, A., Howard, W.R., Kukla, G., Kutzbach, J., Martinson, D.G., McIntyre, A., Mix, A.C., Molfino, B., Morley, J.J., Peterson, L.C., Pisias, N.G., Prell, W.L., Raymo, M.E., Shackleton, N.J., Toggweiler, J.R.: On the structure and origin of major glaciation cycles. Part 2: the 100, 000-year cycle. Paleoceanography 8, 699–735 (1993). doi:10.1029/93PA02751

    Article  Google Scholar 

  36. Imbrie, J., Imbrie, J.Z.: Modelling the climatic response to orbital variations. Science 207, 943–953 (1980). doi:10.1126/science.207.4434.943

    Article  Google Scholar 

  37. Kanamaru, T.: Duffing oscillator. Scholarpedia 3 (3), 6327 (2008). Revision #91210

    Google Scholar 

  38. Kaneko, K.: Oscillation and doubling of torus. Prog. Theor. Phys. 72 (2), 202–215 (1984). doi:10.1143/PTP.72.202. http://ptp.oxfordjournals.org/content/72/2/202.abstract

    Article  MathSciNet  MATH  Google Scholar 

  39. Kapitaniak, T.: Strange non-chaotic transients. J. Sound Vib. 158 (1), 189–194 (1992). doi:10.1016/0022-460X(92)90674-M

    Article  MathSciNet  MATH  Google Scholar 

  40. Khovanov, I.A., Khovanova, N.A., McClintock, P.V.E., Anishchenko, V.S.: The effect of noise on strange nonchaotic attractors. Phys. Lett. A 268 (4–6), 315–322 (2000). doi:10.1016/S0375-9601(00)00183-3. http://www.sciencedirect.com/science/article/pii/S0375960100001833

    Article  Google Scholar 

  41. Lambeck, K., Chapell, J.: Sea level change throughout the last glacial cycle. Science 292, 679–686 (2001). doi:10.1126/science.1059549

    Article  Google Scholar 

  42. Le Treut, H., Ghil, M.: Orbital forcing, climatic interactions and glaciation cycles. J. Geophys. Res. 88 (C9), 5167–5190 (1983). doi:10.1029/JC088iC09p05167

    Google Scholar 

  43. Lisiecki, L.E.: Links between eccentricity forcing and the 100,000-year glacial cycle. Nat. Geosci. 3 (5), 349–352 (2010). doi:10.1038/ngeo828

    Article  Google Scholar 

  44. Lisiecki, L.E., Raymo, M.E.: A Pliocene-Pleistocene stack of 57 globally distributed benthic δ 18O records. Paleoceanography 20, PA1003 (2005). doi:10.1029/2004PA001071

    Google Scholar 

  45. Milankovitch, M.: Canon of insolation and the ice-age problem. Narodna biblioteka Srbije, Beograd (1998). English translation of the original 1941 publication

    Google Scholar 

  46. Mitsui, T., Aihara, K.: Dynamics between order and chaos in conceptual models of glacial cycles. Clim. Dyn. 42 (11–12), 3087–3099 (2014). doi:10.1007/s00382-013-1793-x

    Article  Google Scholar 

  47. Mitsui, T., Crucifix, M., Aihara, K.: Bifurcations and strange nonchaotic attractors in a phase oscillator model of glacial–interglacial cycles. Phys. D Nonlinear Phenom. 306, 25–33 (2015). doi:10.1016/j.physd.2015.05.007

    Article  MathSciNet  Google Scholar 

  48. Nicolis, C.: Stochastic aspects of climatic transitions—response to a periodic forcing. Tellus 34 (1), 1–9 (1982). doi:10.1111/j.2153-3490.1982.tb01786.x. http://dx.doi.org/10.1111/j.2153-3490.1982.tb01786.x

    Article  MathSciNet  Google Scholar 

  49. Nicolis, C.: Climate predictability and dynamical systems. In: Nicolis, C., Nicolis, G. (eds.) Irreversible Phenomena and Dynamical System Analysis in the Geosciences. NATO ASI series C: Mathematical and Physical Sciences, vol. 192, pp. 321–354. Kluwer, Dordrecht (1987)

    Chapter  Google Scholar 

  50. Nishikawa, T., Kaneko, K.: Fractalization of a torus as a strange nonchaotic attractor. Phys. Rev. E 54, 6114–6124 (1996). doi:10.1103/PhysRevE.54.6114

    Article  Google Scholar 

  51. Paillard, D.: The timing of Pleistocene glaciations from a simple multiple-state climate model. Nature 391, 378–381 (1998). doi:10.1038/34891

    Article  Google Scholar 

  52. Paillard, D., Parrenin, F.: The Antarctic ice sheet and the triggering of deglaciations. Earth Planet. Sci. Lett. 227, 263–271 (2004). doi:10.1016/j.epsl.2004.08.023

    Article  Google Scholar 

  53. Pelletier, J.D.: Coherence resonance and ice ages. J. Geophys. Res. Atmos. 108 (D20), (2003). doi:10.1029/2002JD003120. http://dx.doi.org/10.1029/2002JD003120

  54. Penland, C.: Noise out of chaos and why it won’t go away. Bull. Am. Meteorol. Soc. 84 (7), 921–925 (2003). doi:10.1175/BAMS-84-7-921. http://journals.ametsoc.org/doi/abs/10.1175/BAMS-84-7-921

    Article  Google Scholar 

  55. Petit, J.R., Jouzel, J., Raynaud, D., Barkov, N.I., Barnola, J.M., Basile, I., Bender, M., Chappellaz, J., Davis, M., Delaygue, G., Delmotte, M., Kotlyakov, V.M., Legrand, M., Lipenkov, V.Y., Lorius, C., Pepin, L., Ritz, C., Saltzman, E., Stievenard, M.: Climate and atmospheric history of the past 420, 000 years from the Vostok ice core, Antarctica. Nature 399, 429–436 (1999). doi:10.1038/20859

    Article  Google Scholar 

  56. Prasad, A., Negi, S.S., Ramaswamy, R.: Strange nonchaotic attractors. Int. J. Bifurc. Chaos 11 (2), 291–309 (2001). doi:10.1142/S0218127401002195

    Article  MathSciNet  MATH  Google Scholar 

  57. Rasmussen, M.: Attractivity and Bifurcation for Nonautonomous Dynamical Systems. No. 1907 in Lecture Notes in Mathematics. Springer, Berlin/Heidelberg (2000)

    Google Scholar 

  58. Raymo, M.: The timing of major climate terminations. Paleoceanography 12 (4), 577–585 (1997). doi:10.1029/97PA01169

    Article  Google Scholar 

  59. Rial, J.A., Oh, J., Reischmann, E.: Synchronization of the climate system to eccentricity forcing and the 100,000-year problem. Nat. Geosci. 6 (4), 289–293 (2013). doi:10.1038/ngeo1756

    Article  Google Scholar 

  60. Roques, L., Chekroun, M.D., Cristofol, M., Soubeyrand, S., Ghil, M.: Parameter estimation for energy balance models with memory. Proc. R. Soc. A 470, 20140349 (2014). doi:10.1098/rspa.2014.0349

    Article  MathSciNet  MATH  Google Scholar 

  61. Ruddiman, W.F.: Orbital changes and climate. Q. Sci. Rev. 25, 3092–3112 (2006). doi:10.1016/j.quascirev.2006.09.001

    Article  Google Scholar 

  62. Saltzman, B., Maasch, K.A.: Carbon cycle instability as a cause of the late Pleistocene ice age oscillations: modeling the asymmetric response. Glob. Biogeochem. Cycles 2 (2), 117–185 (1988). doi:10.1029/GB002i002p00177

    Article  Google Scholar 

  63. Saltzman, B., Maasch, K.A.: A first-order global model of late Cenozoic climate. Trans. R. Soc. Edinb. Earth Sci. 81, 315–325 (1990). doi:10.1017/S0263593300020824

    Article  Google Scholar 

  64. Shackleton, N.J., Opdyke, N.D.: Oxygen isotope and paleomagnetic stratigraphy of equatorial Pacific core V28-239: late Pliocene to latest Pleistocene. In: Cline, R.M., Hays, J.D. (eds.) Investigation of Late Quaternary Paleoceanography and Paleoclimatology. Memoir, vol. 145, pp. 39–55. Geological Society of America, Boulder (1976)

    Google Scholar 

  65. Sturman, R., Stark, J.: Semi-uniform ergodic theorems and applications to forced systems. Nonlinearity 13 (1), 113 (2000). http://stacks.iop.org/0951-7715/13/i=1/a=306

    Article  MathSciNet  MATH  Google Scholar 

  66. Thompson, D.J.: Pectrum estimation and harmonic analysis. Proc. IEEE 70, 1055–1096 (1982)

    Article  Google Scholar 

  67. Timmermann, A., Lohmann, G.: Noise-induced transitions in a simplified model of the thermohaline circulation. J. Phys. Oceanogr. 30, 1891–1900 (2000)

    Article  Google Scholar 

  68. Tziperman, E., Raymo, M.E., Huybers, P., Wunsch, C.: Consequences of pacing the Pleistocene 100 kyr ice ages by nonlinear phase locking to Milankovitch forcing. Paleoceanography 21, PA4206 (2006). doi:10.1029/2005PA001241

    Article  Google Scholar 

  69. Vautard, R., Yiou, P., Ghil, M.: Singular-spectrum analysis: a toolkit for short, noisy chaotic signals. Phys. D Nonlinear Phenom. 58 (1–4), 95–126 (1992). doi:10.1016/0167-2789(92)90103-T

    Article  Google Scholar 

  70. Weertman, J.: Milankovitch solar radiation variations and ice age ice sheet sizes. Nature 261, 17–20 (1976). doi:10.1038/261017a0

    Article  Google Scholar 

  71. Wunsch, C.: The spectral description of climate change including the 100ky energy. Clim. Dyn. 20, 353–363 (2003). doi:10.1007:S00382-002-0279-z

    Google Scholar 

Download references

Acknowledgements

MC is senior research associate with the Belgian National Fund of Scientific Research. This research is a contribution to the ITOP project, ERC-StG 239604 and to the Belgian Federal Policy Office project BR/121/A2/STOCHCLIM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Crucifix .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mitsui, T., Crucifix, M. (2016). Effects of Additive Noise on the Stability of Glacial Cycles. In: Ancona, F., Cannarsa, P., Jones, C., Portaluri, A. (eds) Mathematical Paradigms of Climate Science. Springer INdAM Series, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-39092-5_6

Download citation

Publish with us

Policies and ethics