Skip to main content

A Mathematical Perspective on Microbial Processes in Earth’s Biogeochemical Cycles

  • Chapter
  • First Online:

Part of the book series: Springer INdAM Series ((SINDAMS,volume 15))

Abstract

The quantitative analysis of biogeochemical cycles interfaces numerous scientific disciplines. These cycles are largely driven by the activity of microorganisms, which needs to be described in mathematical models. Numerous challenges arise from this: First, the challenge of scale, connecting microbes to global patterns across many orders of magnitude. Second, the mathematical treatment of complex natural processes require - aside from expert knowledge - the use of systematic and objective model reduction schemes. Third, models and diverse data need to be integrated efficiently. Here we discuss these three challenges, highlight promising avenues for the expansion of mathematical approaches in the study of Earth’s biogeochemical cycles and propose concerted educational efforts fostering collaborations in mathematical and geoscience research to advance the field.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Arrigo, K.R.: Marine microorganisms and global nutrient cycles. Nature 437, 349–355 (2005)

    Article  Google Scholar 

  2. Battiato, I., Tartakovsky, D.M., Tartakovsky, A.M., Scheibe, T.D.: Hybrid models of reactive transport in porous and fractured media. Adv. Water Resour. 34, 1140–1150 (2011)

    Article  Google Scholar 

  3. Berglund, N., Gentz, B.: Metastability in simple climate models: pathwise analysis of slowly driven Langevin equations. Stoch. Dyn. 2, 327–356 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U.: Complex networks: structure and dynamics. Phys. Rep. 424, 175–308 (2006)

    Article  MathSciNet  Google Scholar 

  5. Brandes, J.A., Devol, A.H., Deutsch, C.: New developments in the marine nitrogen cycle. Chem. Rev. 107, 577–589 (2007)

    Article  Google Scholar 

  6. Cardona, Y., Bracco, A.: Predictability of mesoscale circulation throughout the water column in the Gulf of Mexico. Deep Sea Research Part II: Topical Studies in Oceanography (2014)

    Google Scholar 

  7. Chave, J.: The problem of pattern and scale in ecology: what have we learned in 20 years? Ecol. Lett. 16, 4–16 (2013)

    Google Scholar 

  8. Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., DeFries, R., Galloway, J., Heimann, M., Jones, C., Le Quéré, C., Myneni, R.B., Piao, S., Thornton, P.: Carbon and other biogeochemical cycles. In: Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M. (eds.) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, pp. 465–570. Cambridge University Press, Cambridge (2013)

    Google Scholar 

  9. Crespo-Medina, M., Meile, C.D., Hunter, K.S., Diercks, A.R., Asper, V.L., Orphan, V.J., Tavormina, P.L., Nigro, L.M., Battles, J.J., Chanton, J.P., Shiller, A.M., Joung, D.J., Amon, R.M.W., Bracco, A., Montoya, J.P., Villareal, T.A., Wood, A.M., Joye, S.B.: The rise and fall of methanotrophy following a deepwater oil-well blowout. Nat. Geosci. 7, 423–427 (2014)

    Article  Google Scholar 

  10. Doelman, A., Seawalt, L., Zagaris, A.: The effect of slow processes on emerging spatio-temporal patterns. Chaos 25, 036408 (2015)

    Article  MathSciNet  Google Scholar 

  11. Dowd, M., Jones, E., Parslow, J.: A statistical overview and perspectives on data assimilation for marine biogeochemical models. Environmetrics 25, 203–213 (2014)

    Article  MathSciNet  Google Scholar 

  12. Du, M., Kessler, J.D.: Assessment of the spatial and temporal variability of bulk hydrocarbon respiration following the deepwater horizon oil spill. Environ. Sci. Technol. 46, 10499–10507 (2012)

    Article  Google Scholar 

  13. Weinan, E.: Principles of Multiscale Modeling. Cambridge University Press, Cambridge (2011)

    MATH  Google Scholar 

  14. Falkowski, P., Scholes, R.J., Boyle, E., Canadell, J., Canfield, D., Elser, J., Gruber, N., Hibbard, K., Högberg, P., Linder, S., MacKenzie, F.T., Moore III, B., Pedersen, T., Rosenthal, Y., Seitzinger, S., Smetacek, V., Steffen, W.: The global carbon cycle: a test of our knowledge of earth as a system. Science 290, 291–296 (2000)

    Article  Google Scholar 

  15. Friedrichs, M.A.M., Dusenberry, J.A., Anderson, L.A., Armstrong, R.A., Chai, F., Christian, J.R., Doney, S.C., Dunne, J., Fujii, M., Hood, R., McGillicuddy, D.J., Moore, J.K., Schartau, M., Spitz, Y.H., Wiggert, J.D.: Assessment of skill and portability in regional marine biogeochemical models: Role of multiple planktonic groups. J. Geophys. Res.-Oceans 112, 22 (2007)

    Google Scholar 

  16. Gillis, J.: Giant Plumes of Oil Forming Under the Gulf, The New York Times, 16 May 2010

    Google Scholar 

  17. Gramling, C.M., Harvey, C.F., Meigs, L.C.: Reactive transport in porous media: a comparison of model prediction with laboratory visualization. Environ. Sci. Technol. 36, 2508–2514 (2002)

    Article  Google Scholar 

  18. Gustafson, W.I., Berg, L.K., Easter, R.C., Ghan, S.J.: The Explicit-Cloud Parameterized-Pollutant hybrid approach for aerosol-cloud interactions in multiscale modeling framework models: tracer transport results. Environ. Res. Lett. 3, 7 (2008)

    Article  Google Scholar 

  19. Hajima, T., Kawamiya, M., Watanabe, M., Kato, E., Tachiiri, K., Sugiyama, M., Watanabe, S., Okajima, H., Ito, A.: Modeling in Earth system science up to and beyond IPCC AR5. Prog. Earth Planet. Sci. 1, 1–25 (2014)

    Article  Google Scholar 

  20. Jones, C.K.R.T.: Geometric singular perturbation theory. In: Johnson, R. (ed.) Dynamical Systems, pp. 44–118. Springer, Berlin (1995)

    Chapter  Google Scholar 

  21. Kaper, T., Kaper, H.: Asymptotic analysis of two reduction methods for chemical kinetics. Physica D 165, 66–93 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kessler, J.D., Valentine, D.L., Redmond, M.C., Du, M.R., Chan, E.W., Mendes, S.D., Quiroz, E.W., Villanueva, C.J., Shusta, S.S., Werra, L.M., Yvon-Lewis, S.A., Weber, T.C.: A persistent oxygen anomaly reveals the fate of spilled methane in the deep gulf of Mexico. Science 331, 312–315 (2011)

    Article  Google Scholar 

  23. Kevrekidis, I.G., Gear, C.W., Hummer, G.: Equation-free: the computer-aided analysis of complex multiscale systems. AIChE J. 50, 1346–1355 (2004)

    Article  Google Scholar 

  24. Lai, M.-J., Meile, C.: Scattered data interpolation with nonnegative preservation using bivariate splines and its application. Comput. Aided Geom. Des. 34, 37–48 (2015)

    Article  MathSciNet  Google Scholar 

  25. Larsen, L., Thomas, C., Eppinga, M., Coulthard, T.: Exploratory modeling: extracting causality from complexity. Eos, Trans. Am. Geophys. Union 95, 285–286 (2014)

    Google Scholar 

  26. Meile, C., Tuncay, K.: Scale dependence of reaction rates in porous media. Adv. Water Resour. 29, 62–71 (2006)

    Article  Google Scholar 

  27. Neuman, S.P.: Trends, prospects and challenges in quantifying flow and transport through fractured rocks. Hydrogeol. J. 13, 124–147 (2005)

    Article  Google Scholar 

  28. Newman, M.E.J.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. U. S. A. 103, 8577–8582 (2006)

    Article  Google Scholar 

  29. Pavliotis, G.A., Stuart, A.: Multiscale Methods: Averaging and Homogenization. Springer, New York (2008)

    MATH  Google Scholar 

  30. Ratto, M., Castelletti, A., Pagano, A.: Emulation techniques for the reduction and sensitivity analysis of complex environmental models. Environ. Model. Softw. 34, 1–4 (2012)

    Article  Google Scholar 

  31. Santitissadeekorn, N., Jones, C.: Two-stage filtering for joint state-parameter estimation. Mon. Weather Rev. 143, 2028–2042 (2015)

    Article  Google Scholar 

  32. Scheffer, M., Bascompte, J., Brock, W.A., Brovkin, V., Carpenter, S.R., Dakos, V., Held, H., van Nes, E.H., Rietkerk, M., Sugihara, G.: Early-warning signals for critical transitions. Nature 461, 53–59 (2009)

    Article  Google Scholar 

  33. Scheibe, T.D., Murphy, E.M., Chen, X., Rice, A.K., Carroll, K.C., Palmer, B.J., Tartakovsky, A.M., Battiato, I., Wood, B.D.: An analysis platform for multiscale hydrogeologic modeling with emphasis on hybrid multiscale methods. Groundwater 53, 38–56 (2014)

    Article  Google Scholar 

  34. Schlesinger, W.H., Bernhardt, E.S.: Biogeochemistry, 3rd edn. Academic Press, New York (2013)

    Google Scholar 

  35. Schoepp-Cothenet, B., van Lis, R., Atteia, A., Baymann, F., Capowiez, L., Ducluzeau, A.-L., Duval, S., ten Brink, F., Russell, M.J. and Nitschke, W.: On the universal core of bioenergetics. Biochimica et Biophysica Acta (BBA) – Bioenergetics 1827, 79–93 (2013)

    Article  Google Scholar 

  36. Shinar, G., Feinberg, M.: Concordant chemical reaction networks. Math. Biosci. 240, 92–113 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  37. Tian, R.C.C.: Toward standard parameterizations in marine biological modeling. Ecol. Model. 193, 363–386 (2006)

    Article  Google Scholar 

  38. Todd-Brown, K.E.O., Hopkins, F.M., Kivlin, S.N., Talbot, J.M., Allison, S.D.: A framework for representing microbial decomposition in coupled climate models. Biogeochemistry 109, 19–33 (2012)

    Article  Google Scholar 

  39. Valentine, D.L., Mezic, I., Macesic, S., Crnjaric-Zic, N., Ivic, S., Hogan, P.J., Fonoberov, V.A., Loire, S.: Dynamic autoinoculation and the microbial ecology of a deep water hydrocarbon irruption. Proc. Natl. Acad. Sci. U. S. A. 109, 20286–20291 (2012)

    Article  Google Scholar 

  40. Ward, B.A., Schartau, M., Oschlies, A., Martin, A.P., Follows, M.J., Anderson, T.R.: When is a biogeochemical model too complex? Objective model reduction and selection for North Atlantic time-series sites. Prog. Oceanogr. 116, 49–65 (2013)

    Google Scholar 

  41. Weston, N.B., Joye, S.B.: Temperature-driven decoupling of key phases of organic matter degradation in marine sediments. Proc. Natl. Acad. Sci. U. S. A. 102, 17036–17040 (2005)

    Article  Google Scholar 

  42. Yool, A.: Modeling the role of nitrification in open ocean productivity and the nitrogen cycle. In: Klotz, M.G. (ed.) Methods in Enzymology: Research on Nitrification and Related Processes, vol. 486, Part A, pp. 3–32. Elsevier Academic Press, San Diego (2011)

    Google Scholar 

Download references

Acknowledgements

We would like to thank the organizers of the workshop on “Mathematical paradigms of climate change” for their hospitality and the opportunity to discuss some of the biogeochemical aspects in climate-relevant model formulations. This proceeding also benefitted from subsequent discussions at the US-NSF Workshop on ‘Expanding the role of reactive transport modeling within the Biogeochemical Sciences’, the Gordon Conference on Marine Microbes, and from discussions with A. Bracco and S. Joye. This is ECOGIG contribution #346.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christof Meile .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Meile, C., Jones, C. (2016). A Mathematical Perspective on Microbial Processes in Earth’s Biogeochemical Cycles. In: Ancona, F., Cannarsa, P., Jones, C., Portaluri, A. (eds) Mathematical Paradigms of Climate Science. Springer INdAM Series, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-39092-5_1

Download citation

Publish with us

Policies and ethics