Skip to main content

Iterated Reweighted Rank-Based Estimates for GEE Models

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 168))

Abstract

Repeated measurement designs occur in many areas of statistical research. In 1986, Liang and Zeger offered an elegant analysis of these problems based on a set of generalized estimating equations (GEEs) for regression parameters, that specify only the relationship between the marginal mean of the response variable and covariates. Their solution is based on iterated reweighted least squares fitting. In this paper, we propose a rank-based fitting procedure that only involves substituting a norm based on a score function for the Euclidean norm used by Liang and Zeger. Our subsequent fitting, while also an iterated reweighted least squares solution to GEEs, is robust to outliers in response space and the weights can easily be adapted for robustness in factor space. As with the fitting of Liang and Zeger, our rank-based fitting utilizes a working covariance matrix. We prove that our estimators of the regression coefficients are asymptotically normal. The results of a simulation study show that the our proposed estimators are empirically efficient and valid. We illustrate our analysis on a real data set drawn from a hierarchical (three-way nested) design.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abebe, A., & McKean, J. W. (2007). Highly efficient nonlinear regression based on the Wilcoxon norm. In D. Umbach (Ed.), Festschrift in honor of Mir Masoom Ali on the occasion of his retirement (pp. 340–357).

    Google Scholar 

  • Abebe, A., & McKean, J. W. (2013). Weighted Wilcoxon estimators in nonlinear regression. Australian & New Zealand Journal of Statistics, 55, 401–420.

    Article  MathSciNet  MATH  Google Scholar 

  • Abebe, A., McKean, J. W., & Kloke, J. D. (2010). Iterated Reweighted Rank-Based Estimates for GEE Models. Technical report, Western Michigan University.

    Google Scholar 

  • Bilgic, Y. K., & Susmann, H. (2013). rlme: an R package for rank-based estimation and prediction in random effects nested models. The R Journal, 5, 71–79.

    Google Scholar 

  • Brunner, E., & Denker, M. (1994). Rank statistics under dependent observations and applications to factorial designs. Journal of Statistical Inference and Planning, 42, 353–378.

    Article  MathSciNet  MATH  Google Scholar 

  • Chang, W., McKean, J. W., Naranjo, J. D., & Sheather, S. J. (1999). High breakdown rank-based regression. Journal of the American Statistical Association, 94, 205–219.

    Article  MathSciNet  MATH  Google Scholar 

  • Hettmansperger, T. P., & McKean, J. W. (2011). Robust nonparametric statistical methods (2nd ed.). Boca Raton, FL: Chapman-Hall.

    MATH  Google Scholar 

  • Hollander, M., & Wolfe, D. A. (1999). Nonparametric statistical methods (2nd ed.). New York: Wiley.

    MATH  Google Scholar 

  • Jaeckel, L. A. (1972). Estimating regression coefficients by minimizing the dispersion of the residuals. Annals of Mathematical Statistics, 43, 1449–1458.

    Article  MathSciNet  MATH  Google Scholar 

  • Jung, S.-H., & Ying, Z. (2003). Rank-based regression with repeated measurements data. Biometrika, 90, 732–740.

    Article  MathSciNet  MATH  Google Scholar 

  • Kloke, J., & McKean, J. W. (2014). Nonparametric statistical methods using R. Boca raton, FL: Chapman-Hall.

    Google Scholar 

  • Kloke, J., McKean, J. W., & Rashid, M. (2009). Rank-based estimation and associated inferences for linear models with cluster correlated errors. Journal of the American Statistical Association, 104, 384–390.

    Article  MathSciNet  MATH  Google Scholar 

  • Koul, H. L., Sievers, G. L., & McKean, J. W. (1987). An estimator of the scale parameter for the rank analysis of linear models under general score functions. Scandinavian Journal of Statistics, 14, 131–141.

    MathSciNet  MATH  Google Scholar 

  • Liang, K.-Y., & Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models. Biometrika, 73, 13–22.

    Article  MathSciNet  MATH  Google Scholar 

  • McKean, J. W., Naranjo, J. D., & Sheather, S. J. (1996). Diagnostics to detect differences in robust fits of linear models. Computational Statistics, 11, 223–243.

    MathSciNet  MATH  Google Scholar 

  • Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., & R Core Team (2016). nlme: Linearand Nonlinear Mixed Effects Models. R package version 3.1-128. http://CRAN.R-project.org/package=nlme

    Google Scholar 

  • Qaqish, B. F., & Preisser, J. S. (1999). Resistant fits for regression with correlated outcomes an estimating equations approach. Journal of Statistical Planning and Inference, 75, 415–431.

    Article  MathSciNet  MATH  Google Scholar 

  • Sievers, G. L., & Abebe, A. (2004). Rank estimation of regression coefficients using iterated reweighted least squares, Journal of Statistical Computation and Simulation, 74, 821–831.

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, Y. -G., & Zhu, M. (2006). Rank-based regression for analysis of repeated measures. Biometrika, 93, 459–464.

    Article  MathSciNet  MATH  Google Scholar 

  • Werner, C., & Brunner, E. (2007). Rank methods for the analysis of clustered data. Computational Statistics and Data Analysis, 51, 6041–5054.

    Article  MathSciNet  Google Scholar 

  • West, B. T., Welch, K. B., & Gatecki, A. T. (2006). Linear mixed models: a practicalguide using statistical software. Boca Raton, FL: CRC Press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph W. McKean .

Editor information

Editors and Affiliations

Appendix

Appendix

Proof of Theorem 4.1.

Let \(\boldsymbol{\alpha }^{{\ast}}(\boldsymbol{\beta }) = \hat{\boldsymbol{\alpha }} (\boldsymbol{\beta },\hat{\phi }(\boldsymbol{\beta }))\). Let k ≥ 1 be arbitrary but fixed. For i = 1, , K, let

$$\displaystyle\begin{array}{rcl} \mathbf{Z}_{i}(\boldsymbol{\beta },\boldsymbol{\alpha }^{{\ast}}(\boldsymbol{\beta }))& =& \mathbf{D}_{ i}^{T}\hat{\mathbf{V}}_{ i}^{-1/2}\mathbf{W}_{ i}\hat{\mathbf{V}}_{i}^{-1/2}\left [\mathbf{Y}_{ i} -\mathbf{a}^{{\prime}}(\boldsymbol{\theta }) -\mathbf{M}^{{\ast}}\left (\boldsymbol{\beta }\right )\right ] \\ & =& \mathbf{D}_{i}^{T}\hat{\mathbf{V}}_{ i}^{-1/2}\mathbf{W}_{ i}[\mathbf{Y}_{i}^{{\ast}}-\mathbf{G}_{ i}^{{\ast}}(\boldsymbol{\beta }) -\mathbf{M}\mathbf{1}]. {}\end{array}$$
(4.27)

We then write the GEERB estimating equations (4.17) in the compact form

$$\displaystyle{ \sum _{i=1}^{K}\mathbf{Z}_{ i}(\boldsymbol{\beta },\boldsymbol{\alpha }^{{\ast}}(\boldsymbol{\beta })) = \mathbf{0}\;. }$$
(4.28)

The GEERB estimator \(\hat{\boldsymbol{\beta }}_{R}^{(k)}\) solves this equation.

Similar to Liang and Zeger (1986), we first expand \(K^{-1/2}\sum _{i=1}^{K}\mathbf{Z}_{i}(\boldsymbol{\beta },\boldsymbol{\alpha }^{{\ast}}(\boldsymbol{\beta }))\) in a Taylor series about the true parameter \(\boldsymbol{\beta }\) and evaluated at \(\hat{\boldsymbol{\beta }}_{R}^{(k)}\). By the chain rule, the gradient in this expansion is given by,

$$\displaystyle\begin{array}{rcl} \boldsymbol{\bigtriangledown }_{i}& =& \frac{\partial \mathbf{Z}_{i}(\boldsymbol{\beta },\boldsymbol{\alpha }^{{\ast}}(\boldsymbol{\beta }))} {\partial \boldsymbol{\beta }} + \frac{\partial \mathbf{Z}_{i}(\boldsymbol{\beta },\boldsymbol{\alpha }^{{\ast}}(\boldsymbol{\beta }))} {\partial \boldsymbol{\alpha }} \frac{\partial \boldsymbol{\alpha }} {\partial \boldsymbol{\beta }} \\ & =& \mathbf{A}_{i} + \mathbf{B}_{i}\mathbf{C}\;. {}\end{array}$$
(4.29)

Because \(\hat{\boldsymbol{\beta }}_{R}^{(k)}\) solves Eq. (4.28), the Taylor expansion evaluated at \(\hat{\boldsymbol{\beta }}_{R}^{(k)}\) is

$$\displaystyle{\mathbf{0} =\sum _{ i=1}^{K}\mathbf{Z}_{ i}(\boldsymbol{\beta },\boldsymbol{\alpha }^{{\ast}}(\boldsymbol{\beta })) +\sum _{ i=1}^{K}\boldsymbol{ \bigtriangledown }_{ i}(\hat{\boldsymbol{\beta }}_{R}^{(k)} -\boldsymbol{\beta })\;.}$$

Solving for \(\sqrt{K}(\hat{\boldsymbol{\beta }}_{R}^{(k)} -\boldsymbol{\beta })\), we obtain

$$\displaystyle{ \sqrt{K}(\hat{\boldsymbol{\beta }}_{R}^{(k)} -\boldsymbol{\beta }) = \left \{ \frac{1} {K}\sum _{i=1}^{K}\boldsymbol{ \bigtriangledown }_{ i}\right \}^{-1}\left [ \frac{1} {\sqrt{K}}\sum _{i=1}^{K}\mathbf{Z}_{ i}(\boldsymbol{\beta },\boldsymbol{\alpha }^{{\ast}}(\boldsymbol{\beta }))\right ]\;. }$$
(4.30)

Secondly, we fix \(\boldsymbol{\beta }\) and expand \(K^{-1/2}\sum _{i=1}^{K}\mathbf{Z}_{i}(\boldsymbol{\beta },\boldsymbol{\alpha }^{{\ast}}(\boldsymbol{\beta }))\) about the true parameter \(\boldsymbol{\alpha }\) and evaluated at \(\boldsymbol{\alpha }^{{\ast}}\) to get

$$\displaystyle\begin{array}{rcl} \frac{1} {\sqrt{K}}\sum _{i=1}^{K}\mathbf{Z}_{ i}(\boldsymbol{\beta },\boldsymbol{\alpha }^{{\ast}}(\boldsymbol{\beta }))& =& \frac{1} {\sqrt{K}}\sum _{i=1}^{K}\mathbf{Z}_{ i}(\boldsymbol{\beta },\boldsymbol{\alpha }) + \frac{1} {K}\sum _{i=1}^{K}\frac{\partial } {\boldsymbol{\alpha }} \mathbf{Z}_{i}(\boldsymbol{\beta },\boldsymbol{\alpha })\sqrt{K}(\boldsymbol{\alpha }^{{\ast}}-\boldsymbol{\alpha }) + o_{ p}(1) \\ & =& \frac{1} {\sqrt{K}}\sum _{i=1}^{K}Z_{ i}(\boldsymbol{\beta },\boldsymbol{\alpha }) + \mathbf{B}^{{\ast}}\mathbf{C}^{{\ast}} + o_{ p}(1)\;, {}\end{array}$$
(4.31)

where the o p (1) term is due to regularity conditions which imply that the remainder term is \(\frac{1} {K}O_{p}(1)\). Note that the weights are evaluated at the true parameters in this expansion too.

Because \(\mathbf{Z}_{i}(\boldsymbol{\beta },\boldsymbol{\alpha })\) is evaluated at the true parameters, we use the notation given in (4.18). Letting h it T be the tth row the product \(\mathbf{D}_{i}^{T}\mathbf{V}_{i}^{-1/2}\), we then have

$$\displaystyle\begin{array}{rcl} \frac{1} {\sqrt{K}}\sum _{i=1}^{K}Z_{ i}(\boldsymbol{\beta },\boldsymbol{\alpha })& =& \frac{1} {\sqrt{K}}\sum _{i=1}^{K}\sum _{ t=1}^{n_{i} }\mathbf{h}_{it}^{T}w_{ it}[y_{it}^{\dag }- g_{ it}^{\dag }(\boldsymbol{\beta }) - m(\boldsymbol{\beta })] \\ & =& \frac{1} {\sqrt{K}}\sum _{i=1}^{K}\sum _{ t=1}^{n_{i} }\mathbf{h}_{it}^{T}a[R(y_{ it}^{\dag }- g_{ it}^{\dag }(\boldsymbol{\beta }))]. \\ & =& \frac{1} {\sqrt{K}}\sum _{i=1}^{K}\mathbf{D}_{ i}^{T}\mathbf{V}_{ i}^{-1/2}\mathbf{a}[R(\mathbf{Y}_{ i}^{\dag }-\mathbf{G}_{ i}^{\dag }(\boldsymbol{\beta }))].{}\end{array}$$
(4.32)

The second equality holds because the weights are evaluated at the true parameters.

By Assumptions [A.5] and [A.6], it follows from Theorem 3.1 of Brunner and Denker (1994) and the usual Cramer-Wold device that \(\frac{1} {\sqrt{K}}\sum _{i=1}^{K}Z_{i}(\boldsymbol{\beta },\boldsymbol{\alpha })\) is asymptotically normal with mean 0 and variance-covariance matrix

$$\displaystyle{ \mathbf{M} = \frac{1} {K}\sum _{i=1}^{K}\mathbf{D}_{ i}^{T}\mathbf{V}_{ i}^{-1/2}\mbox{ Var}(\boldsymbol{\varphi }_{ i}^{\dag })\mathbf{V}_{ i}^{-1/2}\mathbf{D}_{ i}. }$$
(4.33)

Note that the form of the variance-covariance matrix follows from (4.32) and the independence between subjects.

Returning to expression (4.31), from the assumptions we have C  = O p (1). Because the scores can change value at only a finite number of points [e.g., Sect. 3.2.1 of Hettmansperger and McKean (2011)], we can write B as

$$\displaystyle{ \mathbf{B}^{{\ast}} = \frac{1} {K}\sum _{i=1}^{K}\left \{\frac{\partial } {\partial \boldsymbol{\alpha }}\mathbf{D}_{i}^{T}\mathbf{V}_{ i}^{-1/2}\right \}\mathbf{a}[R(\mathbf{Y}_{ i}^{\dag }-\mathbf{G}_{ i}^{\dag }(\boldsymbol{\beta }))]. }$$
(4.34)

Assuming Lindeberg-Feller conditions for the quantity in braces, as in (A.4), it follows, similar to (4.32) that \(\sqrt{K}\mathbf{B}^{{\ast}} = O_{p}(1)\), and, hence, B  = o p (1).

To finish the proof, we need to consider the terms in expression (4.29). A simple derivation shows that

$$\displaystyle{\mathbf{A}_{i} = -\mathbf{D}_{i}^{T}\mathbf{V}_{ i}^{-1/2}\mathbf{W}_{ i}\mathbf{V}_{i}^{-1/2}\mathbf{D}_{ i}^{T}.}$$

By assumption, C = O p (1). Since,

$$\displaystyle{\mathbf{B}_{i} = \frac{\partial \mathbf{Z}_{i}(\boldsymbol{\beta },\boldsymbol{\alpha }^{{\ast}}(\boldsymbol{\beta }))} {\partial \boldsymbol{\alpha }} }$$

arguments similar to those above show that \(K^{-1}\sum _{i=1}^{K}\mathbf{B}_{i} = o_{p}(1)\). Hence,

$$\displaystyle{ \frac{1} {K}\boldsymbol{ \bigtriangledown }_{i} = \frac{1} {K}\sum _{i=1}^{K}\mathbf{D}_{ i}^{T}\mathbf{V}_{ i}^{-1/2}\mathbf{V}_{ i}^{-1/2}\mathbf{D}_{ i} + o_{p}(1).}$$

This and the discussion around expressions (4.32) and (4.33) finish the proof of Theorem 4.1.

As a final note, the asymptotic representation of the estimator is

$$\displaystyle{ \sqrt{ K}(\hat{\boldsymbol{\beta }}_{R}^{(k)}-\boldsymbol{\beta }) = \left \{ \frac{1} {K}\sum _{i=1}^{K}\mathbf{A}_{ i}\right \}^{-1}\left [ \frac{1} {\sqrt{K}}\sum _{i=1}^{K}\mathbf{D}_{ i}^{T}\mathbf{V}_{ i}^{-1/2}\mathbf{a}[R(\mathbf{Y}_{ i}^{\dag }-\mathbf{G}_{ i}^{\dag }(\boldsymbol{\beta }))]\right ]+o_{ p}(1). }$$
(4.35)

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Abebe, A., McKean, J.W., Kloke, J.D., Bilgic, Y.K. (2016). Iterated Reweighted Rank-Based Estimates for GEE Models. In: Liu, R., McKean, J. (eds) Robust Rank-Based and Nonparametric Methods. Springer Proceedings in Mathematics & Statistics, vol 168. Springer, Cham. https://doi.org/10.1007/978-3-319-39065-9_4

Download citation

Publish with us

Policies and ethics