Skip to main content

A Tensegrity Paradigm for Minimal Mass Design of Roofs and Bridges

  • Chapter
  • First Online:
Book cover Innovative Numerical Approaches for Multi-Field and Multi-Scale Problems

Abstract

This work presents a parametric design approach to simply-supported structures, exhibiting minimal mass tensegrity architectures (axially-loaded prestressible configurations of axially-loaded members) in two-dimensions. This provides minimal mass bridge structures in the plane. The mass minimization problem considers a distributed loading condition, under buckling and yielding constraints. The minimal mass structure is proved to be a tensegrity system with an optimal complexity. This optimal complexity (number of structural elements) depends only on material properties and the magnitude of the external load. The fact that the minimal mass structure is a Class 1 Tensegrity substructure has significant economic advantage. Class 1 structures are less expensive to construct, and substructures are easily deployable, offering portable applications for small spans. They can be easily assembled for prefabricated component parts for large spans. This minimal mass theory is then used to design a support structure for a solar panel cover of water canals, stopping evaporative losses and generating power without requiring additional land.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Skelton, R. E., & Nagase, K. (2012). Tensile tensegrity structures. International Journal of Space Structures, 27, 131–137.

    Article  Google Scholar 

  2. Skelton, R. E., & de Oliveira, M. C. (2010). Optimal complexity of deployable compressive structures. Journal of the Franklin, I(347), 228–256.

    Article  MathSciNet  MATH  Google Scholar 

  3. Skelton, R. E., & de Oliveira, M. C. (2010). Optimal tensegrity structures in bending: the discrete Michell truss. Journal of the Franklin, I(347), 257–283.

    Article  MathSciNet  MATH  Google Scholar 

  4. Nagase, K., & Skelton, R. E. (2014). Minimal mass tensegrity structures. Journal of the International Association for Shell and Spatial Structures, 55(1), 37–48.

    Google Scholar 

  5. Skelton, R. E., & de Oliveira, M. C. (2010). Tensegrity systems. New York: Springer.

    MATH  Google Scholar 

  6. Carpentieri, G., Skelton, R. E., & Fraternali, F. (2015). On the minimum mass and optimal complexity of planar tensegrity bridges, Internal Report of the University of California, San Diego, Mechanical and Aerospace Engineering, No. 1-2014. www.fernandofraternaliresearch.com/publications/arxiv_tensegrity_bridges_theory_2014.pdf. Accessed 23 June 2015.

  7. Skelton, R.  E., Fraternali, F., Carpentieri, G., & Micheletti, A. (2014). Minimum mass design of tensegrity bridges with parametric architecture and multiscale complexity. Mechanics Research Communications, 58, 124–132, ISSN 0093-6413, doi:10.1016/j.mechrescom.2013.10.017.

    Google Scholar 

  8. Koohestani, K. (2012). Form-finding of tensegrity structures via genetic algorithm. International Journal of Solids and Structures, 49, 739–747.

    Article  Google Scholar 

  9. Rhode-Barbarigos, L., Jain, H., Kripakaran, P., & Smith, I. F. C. (2010). Design of tensegrity structures using parametric analysis and stochastic search. Engineering and Computer, 26(2), 193–203.

    Article  Google Scholar 

  10. Sakamoto , T., Ferrè, A., & Kubo, M. (Eds.). (2008). From control to design: Parametric/algorithmic architecture. Actar, Barcelona.

    Google Scholar 

  11. Sokóf, T., & Rozvany, G. I. N.: New analytical benchmarks for topology optimization and their implications. Part I: bi-symmetric trusses with two point loads between supports. Structural and Multidisciplinary Optimization, 46, 477–486 (2012).

    Google Scholar 

  12. Tilbert, A. G., & Pellegrino, S. (2011). Review of form-finding methods for tensegrity structures. International Journal of Space Structures, 18, 209–223.

    Article  Google Scholar 

  13. Yamamoto, M., Gan, B. S., Fujita, K., & Kurokawa, J. (2011). A genetic algorithm based form-finding for tensegrity structure. Procedia Engineering, 14, 2949–2956.

    Article  Google Scholar 

  14. Fraternali, F., Marino, A., El Sayed, T., & Della Cioppa, A. (2011). On the structural shape optimization through variational methods and evolutionary algorithms. Mechanics of Advanced Materials and Structures, 18, 224–243.

    Article  Google Scholar 

  15. Fraternali, F., Farina, I., & Carpentieri, G. (2014). A discrete-to-continuum approach to the curvatures of membrane networks and parametric surfaces. Mechanics Research Communications, 56, 18–25.

    Article  Google Scholar 

  16. Phocas, M. C., Kontovourkis, O., & Matheou, M. (2012). Kinetic hybrid structure development and simulation. International Journal of Architectural Computing, 10(1), 67–86.

    Article  Google Scholar 

  17. Fraternali, F., & Carpentieri, G. (2013). On the correspondence between 2D force networks and polyhedral stress functions. International Journal of Space Structures, 29(3), 145–159.

    Article  Google Scholar 

  18. Michell, A. G. M. (1904). The limits of economy of material in frame-structures. Philosophical Magazine, 8, 589–597.

    Article  MATH  Google Scholar 

  19. Kahn, M., & Longcore, T. (2014). A Feasibility Analysis of Installing Solar Photovoltaic Panels Over California Water Canals. UCLA Institute of the Environment and Sustainability, Los Angeles, CA. http://www.environment.ucla.edu/perch/resources/files/adeptfinalreport1.pdf. Accessed 22 July 2014.

  20. Carpentieri, G., Modano, M., Fabbrocino, F., & Fraternali, F. (2015). Optimal design and dynamics of truss bridges. In COMPDYN 2015—5th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering (pp. 1731–1740).

    Google Scholar 

  21. Modano, M., Fabbrocino, F., Gesualdo, A., Matrone, G., Farina, I., & Fraternali, F. (2015). On the forced vibration test by vibrodyne. In COMPDYN 2015—5th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering (pp. 209–217).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerardo Carpentieri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Carpentieri, G., Fraternali, F., Skelton, R.E. (2016). A Tensegrity Paradigm for Minimal Mass Design of Roofs and Bridges. In: Weinberg, K., Pandolfi, A. (eds) Innovative Numerical Approaches for Multi-Field and Multi-Scale Problems. Lecture Notes in Applied and Computational Mechanics, vol 81. Springer, Cham. https://doi.org/10.1007/978-3-319-39022-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39022-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39021-5

  • Online ISBN: 978-3-319-39022-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics