Skip to main content

Part of the book series: Lecture Notes in Applied and Computational Mechanics ((LNACM,volume 81))

Abstract

The material-point method (MPM) was introduced about 20 years ago and is a versatile method for solving problems in continuum mechanics. The flexibility of the method is achieved by combining two discretizations of the material. One is a Lagrangian description based on representing the continuum by a set of material points that are followed throughout the calculation. The second is a background grid that is used to solve the continuum equations efficiently. In its original form, some applications of the method appeared to be second order accurate while other tests showed poor or no convergence. This paper provides a framework for analyzing the errors in MPM. Moreover, the analysis suggests modifications to the algorithm to improve accuracy. The analysis also points to connections between MPM and other meshfree methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arroyo, M., & Ortiz, M. (2006). Local maximum-entropy approximation schemes: A seamless bridge between finite elements and meshfree methods. International Journal for Numerical Methods in Engineering, 65(13), 2167–2202.

    Article  MathSciNet  MATH  Google Scholar 

  2. Atluri, S. N., & Zhu, T. (1998). A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics. Computational Mechanics, 22, 117–127.

    Article  MathSciNet  MATH  Google Scholar 

  3. Beltschko, T., Lu, Y. Y., & Gu, L. (1994). Element-free Galerkin methods. International Journal of Numerical Methods in Engineering, 37, 229–256.

    Article  MathSciNet  MATH  Google Scholar 

  4. Belytschko, T., Krongauz, Y., Organ, D., Fleming, M., & Krysl, P. (1996). Meshless methods: An overview and recent developments. Computer Methods in Applied Mechanics and Engineering, 139, 3–47.

    Article  MATH  Google Scholar 

  5. Brackbill, J. U. (1988). The ringing instability in particle-in-cell calculations of low-speed flow. Journal of Computational Physics, 75, 469–492.

    Article  MathSciNet  MATH  Google Scholar 

  6. Brackbill, J. U., & Ruppel, H. M. (1986). FLIP: A method for adaptively zoned, particle-in-cell calculations of fluid flows in two dimensions. Journal of Computational Physics, 65, 314–343.

    Article  MathSciNet  MATH  Google Scholar 

  7. Duan, Q., Gao, X., Wang, B., Li, X., Zhang, H., Belytschko, T., et al. (2014). Consistent element-free Galerkin method. International Journal for Numerical Methods in Engineering, 99, 79–101.

    Article  MathSciNet  Google Scholar 

  8. Duarte, A. C., & Oden, J. T. (1996). H-p clouds–an h-p meshless method. Numerical Methods for Partial Differential Equations, 12(6), 673–705.

    Article  MathSciNet  MATH  Google Scholar 

  9. Han, W., & Meng, X. (2001). Error analysis of the reproducing kernel particle method. Computer Methods in Applied Mechanics and Engineering, 190, 6157–6181.

    Article  MathSciNet  MATH  Google Scholar 

  10. Harlow, F. H. (1957). Hydrodynamic problems involving large fluid distortions. Journal of the Association for Computing Machinery, 4, 137.

    Article  Google Scholar 

  11. Li, S., & Liu, W. K. (2002). Meshfree and particle methods and their applications. Applied Mechanics Reviews, 55(1), 1–34.

    Article  Google Scholar 

  12. Li, B., Habbal, F., & Ortiz, M. (2010). Optimal transportation meshfree approximation schemes for fluid and plastic flows. International Journal for Numerical Methods in Engineering, 83, 1541–1579.

    Article  MathSciNet  MATH  Google Scholar 

  13. Liu, W., Jun, S., Li, S., Adee, J., & Beltschko, T. (1995). Reproducing kernel particle methods for structural dynamics. International Journal of Numerical Methods in Engineering, 38, 1655–1680.

    Article  MathSciNet  MATH  Google Scholar 

  14. Liu, W. K., Jun, S., & Zhang, Y. (1995). Reproducing kernel particle methods. International Journal for Numerical Methods in Engineering, 20, 1081–1106.

    Article  MathSciNet  MATH  Google Scholar 

  15. Melenk, J. M., & Babuska, I. (1996). Partition of unity finite element method. Computer Methods in Applied Mechanics and Engineering, 139, 314–389.

    Article  MathSciNet  MATH  Google Scholar 

  16. Nguyen, V. P., Rabczuk, T., Bordas, S., & Duflot, M. (2008). Meshless methods: A review and computer implementation aspects. Mathematics and Computers in Simulation, 79(3), 793.

    Article  MathSciNet  MATH  Google Scholar 

  17. Shepard, D. (1968). A two-dimensional interpolation function for irregularly-spaced data. In Proceedings—1968 ACM National Conference (pp. 517–524).

    Google Scholar 

  18. Steffen, M., Kirby, R. M., & Berzins, M. (2008). Analysis and reduction of quadrature errors in the material point method (MPM). International Journal for Numerical Methods in Engineering, 76(6), 922–948.

    Article  MathSciNet  MATH  Google Scholar 

  19. Steffen, M., Kirby, R. M., & Berzins, M. (2010). Decoupling and balancing of space and time errors in the material point method (MPM). International Journal for Numerical Methods in Engineering, 82, 1207–1243.

    MathSciNet  MATH  Google Scholar 

  20. Sulsky, D., Chen, Z., & Schreyer, H. L. (1995). Application of a particle-in-cell method to solid mechanics. Computer Physics Communications, 87, 236–252.

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the National Science Foundation under grant ARC 1023667 to the University of New Mexico.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deborah Sulsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sulsky, D., Gong, M. (2016). Improving the Material-Point Method. In: Weinberg, K., Pandolfi, A. (eds) Innovative Numerical Approaches for Multi-Field and Multi-Scale Problems. Lecture Notes in Applied and Computational Mechanics, vol 81. Springer, Cham. https://doi.org/10.1007/978-3-319-39022-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39022-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39021-5

  • Online ISBN: 978-3-319-39022-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics