Skip to main content

Cellulose and Cellulose Derivatives in Li-Ion Batteries

  • Chapter
  • First Online:
Large-scale Production of Paper-based Li-ion Cells

Part of the book series: PoliTO Springer Series ((PTSS))

  • 914 Accesses

Abstract

This chapter concerns the state of art of the use of cellulose for electrochemical devices. Cellulose constitutes the most abundant, renewable polymer source available worldwide today. Moreover, cellulose fibers have low cost, excellent mechanical proprieties and easy processability. The Chapter starts with a description of this polymer and of the treatments needed to obtain cellulose derivatives, in exemplum microfibrillated cellulose. At the end, the electrochemical devices that exploited paper either as electrodic binder or as separator before this research work was performed are briefly examined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Klemm, B. Heublein, H.-P. Fink, A. Bohn, Cellulose: fascinating biopolymerand sustainable raw material. Angew. Chem. Int. Ed. 44, 3358–3393 (2005)

    Article  Google Scholar 

  2. H. Staudinger, Viscosity investigations for the examination of the constitution of natural products of high molecular weight and of rubber and cellulose. Trans. Faraday Soc. 29, 18–32 (1933)

    Article  Google Scholar 

  3. J.F. Kennedy, Cellulose and its derivatives: chemistry, biochemistry, and applications, ed. by Horwood (1985)

    Google Scholar 

  4. S. Kamel, Nanotechnology and its applications in lignocellulosic composites, a mini review. Expr. Polym. Lett. 1, 546–575 (2007)

    Article  Google Scholar 

  5. M.A. Hubbe, O.J. Rojas, L.A. Lucia, M. Sain, Cellulosic nanocomposites: a review. Biomaterials 3, 929–980 (2008)

    Google Scholar 

  6. I. Siró, D. Plackett, Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17, 459–494 (2010)

    Article  Google Scholar 

  7. D. Klemm, F. Kramer, S. Moritz, T. Lindström, M. Ankerfors, D. Gray, Nanocelluloses: a new family of nature-based materials. Angew. Chem. Int. Ed. 50, 5438–5466 (2011)

    Article  Google Scholar 

  8. V. Favier, H. Chanzy, J.Y. Cavaille, Polymer nanocomposites reinforced by cellulose whiskers. Macromolecules 28, 6365–6367 (1995)

    Article  Google Scholar 

  9. A.F. Turbak, F.W. Snyder, K.R. Sandberg, Microfibrilated cellulose, a new cellulose product: proprieties, uses and commercial potential. J. Appl. Polym. Sci.: Appl. Polym. Symp. 37, 815–827 (1983)

    Google Scholar 

  10. F.W. Herrick, R.L. Casebier, J.K. Hamilton, K.R. Sandberg, Microfibrilated cellulose: morphology and accessibility. J. Appl. Polym. Sci.: Appl. Polym. Symp. 37, 797–813 (1983)

    Google Scholar 

  11. E. Dinand, H. Chanzy, M.R. Vignon, Parenchymal cell cellulose from sugar beet pulp: preparation and properties. Cellulose 3, 183–188 (1996)

    Article  Google Scholar 

  12. E. Dinand, M.R. Vignon, Isolation and NMR characterisation of a (4-O-methyl-d-glucurono)-d-xylan from sugar beet pulp. Carbohydr. Res. 330, 285–288 (2001)

    Article  Google Scholar 

  13. L. Heux, E. Dinand, M.R. Vignon, Structural aspect in ultrathin cellulose microfibrils. Carbohydr. Polym. 40, 115–124 (1999)

    Article  Google Scholar 

  14. A. Dufresne, High performance nanocomposite materials from thermoplastic matrix and polysaccharide fillers. Recent Res. Dev. Macromol. Res. 3, 455–474 (1998)

    Google Scholar 

  15. D. Klemm, D. Schumann, F. Kramer, N. Hessler, M. Hornung, H. P. Schmauder, S. Marsch in Adv. Polym. Sci. (Polysaccharides II), Vol. 205, ed. by D. Klemm (Springer, Heidelberg, 2006), pp. 49–96

    Google Scholar 

  16. M.A.S. Azizi Samir, F. Alloin, A. Dufresne, Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6 (2005), pp. 612–626

    Google Scholar 

  17. M. Henriksson, G. Henriksson, L.A. Berglund, T. Lindstrom, An environmentally friendly method for enzyme-assisted preparation of microfibrillated cellulose (MFC) nanofibers. Eur Polym J 43, 3434–3441 (2007)

    Article  Google Scholar 

  18. A.F. Turbak, F.W. Snyder, K.R. Sandberg (ITT Corp.), US-A 4341807 (1982)

    Google Scholar 

  19. D. Page, Fundamentals of papermaking fibers: transactions of the symposium held at Cambridge, UK, September 17–22, (1989), pp. 1–38

    Google Scholar 

  20. T. Lindstrom, L. Winter, STFI internal report, C159 (1988)

    Google Scholar 

  21. A.F. Turbak, F.W. Snyder, K.R. Sandberg, Microfibrillated cellulose, a new cellulose product: properties, uses and commercial potential. J. Appl. Polym. Sci., Appl. Polym. Symp. 37, 815–827 (1983)

    Google Scholar 

  22. L. Wagberg, L. Winter, L. Odberg, T. Lindstrom, On the charge stoichiometry upon adsorption of a cationic polyelectrolyte on cellulosic materials. Colloids Surf. 27, 163–173 (1987)

    Article  Google Scholar 

  23. S. Iwamoto, K. Abe, H. Yano, Effect of hemicellulose on wood pulp nanofibrillation and nanofiber network characteristics. Biomacromolecules 9, 1022–1026 (2008)

    Article  Google Scholar 

  24. P. Kritzer, J.A. Cook, Nonwovens as separators for alkaline batteries. J. Electrochem. Soc. 154, A481–A494 (2007)

    Article  Google Scholar 

  25. T. Danko, Properties of cellulose separators for alkaline secondary batteries, in Proceedings of the Tenth Annual Battery Conference on Applications and Advances (1995), pp. 261–264

    Google Scholar 

  26. M. Schmidt, U. Heider, A. Kuehner, Lithium fluoroalkylphosphates: a new class of conducting salts for electrolytes for high energy lithium-ion batteries. J. Power Sources 97, 557–560 (2001)

    Article  Google Scholar 

  27. T. Hatakeyama, K. Nakamura, H. Hatakeyama, Vaporization of bound water associated with cellulose fibres. Thermochim. Acta 352, 233–239 (2000)

    Article  Google Scholar 

  28. G. Venugopal, J. Moore, J. Howard, S. Pendalwar, Characterization of microporous separators for lithium-ion batteries. J. Power Sources 77, 34–41 (1999)

    Article  Google Scholar 

  29. G. Venugopal, Characterization of thermal cut-off mechanisms in prismatic lithium-ion batteries. J. Power Sources 101, 231–237 (2001)

    Article  Google Scholar 

  30. C. Brissot, M. Rosso, J.N. Chazalviel, S. Lascaud, Dendritic growth mechanisms in lithium/polymer cells. J. Power Sources 81, 925–929 (1999)

    Article  Google Scholar 

  31. M. Rosso, C. Brissot, A. Teyssot, M. Dollé, L. Sannier, J.-M. Tarascon, Dendrite short-circuit and fuse effect on Li/polymer/Li cells. Electrochim. Acta 51, 5334–5340 (2006)

    Article  Google Scholar 

  32. X. Huang, Separator technologies for lithium-ion batteries. J. Solid State Electrochem. 15, 649–662 (2011)

    Article  Google Scholar 

  33. I. Kuribayashi, Characterization of composite cellulosic separators for rechargeable lithium-ion batteries. J. Power Sources 63, 87–91 (1996)

    Article  Google Scholar 

  34. A. Gozdz, I. Plitz, A. Du Pasquier, J. Shelburne, Use of electrode-bonded paper separators in non-aqueous electric double-layer capacitors and Li-ion batteries, 201st Meeting of The Electrochemical Society (2002), pp. 12–17

    Google Scholar 

  35. A. Gozdz, Electrochemical cell comprising lamination of electrode and paper separator members, U.S. Patent US 2003/0062257 A1 (2003)

    Google Scholar 

  36. L.C. Zhang, X. Sun, Z. Hu, C.C. Yuan, C.H. Chen, Rice paper as a separator membrane in lithium-ion batteries. J Power Sources 204 (2012), pp. 149–154

    Google Scholar 

  37. J.R. Nair, C. Gerbaldi, A. Chiappone, E. Zeno, R. Bongiovanni, S. Bodoardo, N. Penazzi, UV-cured polymer electrolyte membranes for Li-cells: improved mechanical properties by a novel cellulose reinforcement. Electrochem. Commun. 11, 1796–1798 (2009)

    Article  Google Scholar 

  38. J.R. Nair, A. Chiappone, C. Gerbaldi, V.S. Ijeri, E. Zeno, R. Bongiovanni, N. Penazzi, Novel cellulose reinforcement for polymer electrolyte membranes with outstanding mechanical properties. Electrochim. Acta 57, 104–111 (2011)

    Article  Google Scholar 

  39. M. Schroers, A. Kokil, C. Weder, Solid polymer electrolytes based on nanocomposites of ethylene oxide–epichlorohydrin copolymers and cellulose whiskers. J. Appl. Polym. Sci. 93, 2883–2888 (2004)

    Article  Google Scholar 

  40. M.A.S. Azizi Samir, F. Alloin, J.Y. Sanchez, A. Dufresne, Cross-linked nanocomposite polymer electrolytes reinforced with cellulose whiskers. Macromolecules 37 (2004), pp. 4839–4844

    Google Scholar 

  41. M.A.S. Azizi Samir, A.M. Mateos, F. Alloin, J.Y. Sanchez, A. Dufresne, Plasticized nanocomposite polymer electrolytes based on poly(oxyethylene) and cellulose whiskers. Electrochimica Acta 49 (2004), pp. 4667–4677

    Google Scholar 

  42. M.A.S. Azizi Samir, F. Alloin, J.Y. Sanchez, A. Dufresne, Cellulose nanocrystals reinforced poly(oxyethylene). Polymer 45 (2004), pp. 4149–4157

    Google Scholar 

  43. M.A.S. Azizi Samir, F. Alloin, W. Gorecki, J.Y. Sanchez, A. Dufresne, Nanocomposite polymer electrolytes based on poly(oxyethylene) and cellulose Nanocrystals. J. Phys. Chem. B 108 (2004), pp. 10845–10852

    Google Scholar 

  44. M.A.S. Azizi Samir, F. Alloin, J.Y. Sanchez, A. Dufresne, Nanocomposite polymer electrolytes based on poly(oxyethylene) and cellulose whiskers. Polímeros 15 (2005), pp. 109–113

    Google Scholar 

  45. M.A.S. Azizi Samir, L. Chazeau, F. Alloin, J.Y. Cavaillé, A. Dufresne, J.Y Sanchez, POE-based nanocomposite polymer electrolytes reinforced with cellulose Whiskers. Electrochimica Acta 50 (2005), pp. 3897–3903

    Google Scholar 

  46. M.A.S. Azizi Samir, F. Alloin, A. Dufresne, High performance nanocomposite polymer electrolytes. Composite Interfaces 13 (2006), pp. 545–559

    Google Scholar 

  47. F. Alloin, A. D’Aprea, N.E. Kissi, A. Dufresne, F. Bossard, Nanocomposite polymer electrolyte based on whisker or microfibrils polyoxyethylene nanocomposites. Electrochim. Acta 55, 5186–5194 (2010)

    Article  Google Scholar 

  48. A. Chiappone, J.R. Nair, C. Gerbaldi, L. Jabbour, R. Bongiovanni, E. Zeno, N. Penazzi, Microfibrillated cellulose as reinforcement for Li-ion battery polymer electrolytes with excellent mechanical stability. J. Power Sources 196, 10280–10288 (2011)

    Article  Google Scholar 

  49. G.O. Machado, H.C.A. Ferreira, A. Pawlicka, Influence of plasticizer contents on the properties of HEC-based solid polymeric electrolytes. Electrochim. Acta 50, 3827–3831 (2005)

    Article  Google Scholar 

  50. M. Chelmecki, W.H. Meyer, G. Wegner, Effect of crosslinking on polymer electrolytes based on cellulose. J. Appl. Polym. Sci. 105, 25–29 (2007)

    Article  Google Scholar 

  51. J.M. Lee, D.Q. Nguyen, S.B. Lee, H. Kim, B.S. Ahn, H. Lee, Cellulose triacetatebased polymer gel electrolytes. J. Appl. Polym. Sci. 115, 32–36 (2010)

    Article  Google Scholar 

  52. Z. Ren, Y. Liu, K. Sun, X. Zhou, N. Zhang, A microporous gel electrolyte based on poly(vinylidene fluoride-co-hexafluoropropylene)/fully cyanoethylated cellulose derivative blend for lithium-ion battery. Electrochim. Acta 54, 1888–1892 (2009)

    Article  Google Scholar 

  53. Z. Yue, J.M.G. Cowie, Synthesis and characterization of ion conducting cellulose esters with PEO side chains. Polymer 43, 4453–4460 (2002)

    Article  Google Scholar 

  54. Z. Yue, I.J. McEwen, J.M.G. Cowie, Ion conducting behaviour and morphology of solid polymer electrolytes based on a regioselectively substituted cellulose ether with PEO side chains. J. Mater. Chem. 12, 2281–2285 (2002)

    Article  Google Scholar 

  55. L. Hu, M. Pasta, F.L. Mantia, L. Cui, S. Jeong, H.D. Deshazer, Stretchable, porous, and conductive energy textiles. Nano Lett. 10, 708–714 (2010)

    Article  Google Scholar 

  56. L. Hu, F. La Mantia, H. Wu, X. Xie, J. McDonough, M. Pasta, Lithium-ion textile batteries with large areal mass loading. Adv. Energy Mater 1, 1012–1017 (2011)

    Article  Google Scholar 

  57. M. Hilder, B. Winther-Jensen, N.B. Clark, Paper-based, printed zinc–air battery. J. Power Sources 194, 1135–1141 (2009)

    Article  Google Scholar 

  58. L. Hu, H. Wu, Y. Cui, Printed energy storage devices by integration of electrodes and separators into single sheets of paper. Appl. Phys. Lett. 96, 183502–183503 (2010)

    Article  Google Scholar 

  59. L. Hu, J.W. Choi, Y. Yang, S. Jeong, F. La Mantia, L.F. Cui, Highly conductive paper for energy-storage devices. Proc. Natl. Acad. Sci. 106, 21490–21494 (2009)

    Article  Google Scholar 

  60. I. Ferreira, I. Bràs, N. Correia, P. Barquinha, E. Fortunato, R. Martins, Self-rechargeable paper thin-film batteries: performance and applications. J. Display Technol. 6, 332–335 (2010)

    Article  Google Scholar 

  61. L. Hu, H. Wu, F. La Mantia, Y. Yang, Y. Cui, Thin, flexible secondary Li-ion paper batteries, ACS Nano 4 (2010), pp. 5843–5848

    Google Scholar 

  62. J. Drofenik, M. Gaberscek, R. Dominko, F.W. Poulsen, M. Mogensen, S. Pejovnik, Cellulose as a binding material in graphitic anodes for Li ion batteries: a performance and degradation study, Electrochimica Acta 48 (2003), pp. 883–889

    Google Scholar 

  63. H. Buqa, M. Holzapfel, F. Krumeich, C. Veit, P. Novák, Study of styrene butadiene rubber and sodium methyl cellulose as binder for negative electrodes in lithiumion batteries. J. Power Sources 161, 617–622 (2006)

    Article  Google Scholar 

  64. J. Li, R.B. Lewis, J.R. Dahn, Sodium carboxymethyl cellulose, Electrochem Solid-State Lett. 10 (2007), pp. A17–A20

    Google Scholar 

  65. B. Lestriez, S. Bahri, I. Sandu, L. Roué, D. Guyomard, On the binding mechanism of CMC in Si negative electrodes for Li-ion batteries. Electrochem. Commun. 9, 2801–2806 (2007)

    Article  Google Scholar 

  66. N.S. Hochgatterer, M.R. Schweiger, S. Koller, P.R. Raimann, T. Wohrle, C. Wurm, Silicon/graphite composite electrodes for high-capacity anodes: Influence of binder chemistry on cycling stability. Electrochem Solid-State Lett. 11 (2008), pp A76–A78

    Google Scholar 

  67. N. Ding, J. Xu, Y. Yao, G. Wegner, I. Lieberwirth, C. Chen, Improvement of cyclability of Si as anode for Li-ion batteries. J. Power Sources 192 (2009), pp. 644–651

    Google Scholar 

  68. S.L. Chou, X.W. Gao, J.Z. Wang, D. Wexler, Z.X. Wang, L.Q. Chen, Tin/polypyrrole composite anode using sodium carboxymethyl cellulose binder for lithium-ion batteries, Dalton Transac 40 (2011), pp. 12801–12807

    Google Scholar 

  69. M. Mancini, F. Nobili, R. Tossici, M. Wohlfahrt-Mehrens, R. Marassi, High performance, environmentally friendly and low cost anodes for lithium-ion battery based on TiO2 anatase and water soluble binder carboxymethyl cellulose. J. Power Sources 196, 9665–9671 (2011)

    Article  Google Scholar 

  70. S.L. Chou, J.Z. Wang, H.K. Liu, S.X. Dou, Rapid synthesis of Li4Ti5O12 microspheres as anode materials and its binder effect for lithium-ion battery. J. Phys. Chem. C 115, 16220–16227 (2011)

    Article  Google Scholar 

  71. J.S. Bridel, T. Azais, M. Morcrette, J.M. Tarascon, D. Larcher, In situ observation and long-term reactivity of Si/C/CMC composites electrodes for Li-ion batteries. J. Electrochem. Soc. 158, A750–A759 (2011)

    Article  Google Scholar 

  72. W. Zaïdi, Y. Oumellal, J.P. Bonnet, J. Zhang, F. Cuevas, M. Latroche, Carboxymethylcellulose and carboxymethylcellulose-formate as binders in MgH2–carbon composites negative electrode for lithium-ion batteries”. J. Power Sources 196, 2854–2857 (2011)

    Article  Google Scholar 

  73. F.M. Courtel, S. Niketic, D. Duguay, Y. Abu-Lebdeh, I.J. Davidson, Water-soluble binders for MCMB carbon anodes for lithium-ion batteries. J. Power Sources 196, 2128–2134 (2011)

    Article  Google Scholar 

  74. J.H. Lee, J.S. Kim, Y.C. Kim, D.S. Zang, U. Paik, Dispersion properties of aqueous-based LiFePO4 pastes and their electrochemical performance for lithium batteries. Ultramicroscopy 108, 1256–1259 (2008)

    Article  Google Scholar 

  75. J.H. Lee, J.S. Kim, Y.C. Kim, D.S. Zang, Y.M. Choi, W.I. Park, Effect of carboxymethyl cellulose on aqueous processing of LiFePO4 cathodes and their electrochemical performance. Electrochem. Solid St 11 (2008), pp. A175–A 179

    Google Scholar 

  76. S.F. Lux, F. Schappacher, A. Balducci, S. Passerini, M. Winter, Low cost, environmentally benign binders for lithium-ion batteries. J. Electrochem. Soc. 157, A320–A325 (2010)

    Article  Google Scholar 

  77. L. Xie, L. Zhao, J. Wan, Z. Shao, F. Wang, S. Lu, The electrochemical performance of carboxymethyl cellulose lithium as a binding material for anthraquinone cathodes in lithium batteries. J. Electrochem. Soc. 159, A499–A505 (2012)

    Article  Google Scholar 

  78. V.L. Pushparaj, M.M. Shaijumon, A. Kumar, S. Murugesan, L. Ci, R. Vajtai, Flexible energy storage devices based on nanocomposite paper. Proc. National Acad. Sci 104 (2007), pp. 13574–13577

    Google Scholar 

  79. S.S. Jeong, N. Böckenfeld, A. Balducci, M. Winter, S. Passerini, Natural cellulose as binder for lithium battery electrodes. J. Power Sources 199, 331–335 (2012)

    Article  Google Scholar 

  80. G. Nystrom, A. Razaq, M. Strømme, L. Nyholm, A. Mihranyan, Ultrafast all polymer paper-based batteries. Nano Lett. 9, 3635–3639 (2009)

    Article  Google Scholar 

  81. G. Nystrom, A. Mihranyan, A. Razaq, T. Lindstrom, L. Nyholm, M. Strømme, A nanocellulose polypyrrole composite based on microfibrillated cellulose from wood. J. Phys. Chem. B 114, 4178–4182 (2010)

    Article  Google Scholar 

  82. A. Caballero, J. Morales, L. Sanchez, Tin nanoparticles formed in the presence of cellulose fibers exhibit excellent electrochemical performance as anode materials in lithium-ion batteries. Electrochem. Solid-State Lett. 8, A464–A466 (2005)

    Article  Google Scholar 

  83. Á. Caballero, J. Morales, L. Sánchez, A simple route to high performance nanometric metallic materials for Li-ion batteries involving the use of cellulose: the case of Sb. J. Power Sources 175, 553–557 (2008)

    Article  Google Scholar 

  84. L. Jabbour, M. Destro, C. Gerbaldi, D. Chaussy, N. Penazzi, D. Beneventi, Use of paper-making techniques for the production of Li-ion paper-batteries. Nordic Pulp & Paper Research Jurnal. 27, 472–475 (2012)

    Article  Google Scholar 

  85. S. Leijonmarck, A. Cornell, G. Lindbergh, L. Wagberg, Single-paper flexible Li-ion battery cells through a paper-making process based on nano-fibrillated cellulose. J. Mater. Chem. A 1, 4671–4677 (2013)

    Article  Google Scholar 

  86. J.S. Kim, Y.H. Lee, I. Lee, T.S. Kim, M.H. Ryou, J.W. Choi, Large area multi-stacked lithium-ion batteries for flexible and rollable applications. J. Mater. Chem. A 2, 10862–10868 (2014)

    Article  Google Scholar 

  87. T. Cetinkaya, S. Ozcan, M. Uysal, M.O. Guler, H. Akbulut, Free-standing flexible graphene oxide paper electrode for rechargeable Li–O2 batteries. J. Power Sources 267, 140–147 (2014)

    Article  Google Scholar 

  88. Z. Jian, Y. Chen, F. Li, T. Zhang, C. Liu, H. Zhou, High capacity Na–O2 batteries with carbon nanotube paper as binder-free air cathode. J. Power Sources 1, 466–469 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenzo Zolin .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zolin, L. (2017). Cellulose and Cellulose Derivatives in Li-Ion Batteries. In: Large-scale Production of Paper-based Li-ion Cells . PoliTO Springer Series. Springer, Cham. https://doi.org/10.1007/978-3-319-39016-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39016-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39015-4

  • Online ISBN: 978-3-319-39016-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics