Skip to main content

Quantum Information Experiments with Free-Space Channels

  • Chapter
  • First Online:
Quantum [Un]Speakables II

Part of the book series: The Frontiers Collection ((FRONTCOLL))

Abstract

Satellite based quantum communication is believed to be a feasible way to achieve global unconditional secure network. Here, we present several free space experiments towards this direction. We also show that the technology developed in these experiments provides a platform to test the foundation of quantum theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Takesur et al., Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors. Nat. Photon 1, 343–348 (2007)

    Article  ADS  Google Scholar 

  2. D. Stucki et al., High rate, long-distance quantum key distribution over 250 km of ultra low loss fibres. New J. Phys. 11, 075003 (2009)

    Article  ADS  Google Scholar 

  3. Y. Liu et al., Decoy-state quantum key distribution with polarized photons over 200 km. Opt. Express 18, 8587–8594 (2009)

    Article  ADS  Google Scholar 

  4. H.-J. Briegel et al., Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932 (1998)

    Article  ADS  Google Scholar 

  5. M. Zukowski et al., “Event-ready-detectors” Bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287 (1993)

    Article  ADS  Google Scholar 

  6. C.H. Bennett et al., Purification of noisy entanglement and faithful teleportation via noisy channels. Phys. Rev. Lett. 76, 722 (1996)

    Article  ADS  Google Scholar 

  7. Z.-S. Yuan et al., Experimental demonstration of a BDCZ quantum repeater node. Nature 454, 1098–1101 (2008)

    Article  ADS  Google Scholar 

  8. C.-Z. Peng et al., Experimental free-space distribution of entangled photon pairs over 13 km: towards satellite-based global quantum communication. Phys. Rev. Lett. 94, 150501 (2005)

    Article  ADS  Google Scholar 

  9. T. Schmitt-Manderbach et al., Experimental demonstration of free-space decoy-state quantum key distribution over 144 km. Phys. Rev. Lett. 98, 010504 (2007)

    Article  ADS  Google Scholar 

  10. R. Ursin et al., Entanglement-based quantum communication over \(144\) km. Nat. Phys. 3, 481–486 (2007)

    Article  Google Scholar 

  11. J. Yin et al., Quantum teleportation and entanglement distribution over \(100\)-kilometre free-space channels. Nature 488, 185–188 (2012)

    Article  ADS  Google Scholar 

  12. C. Erven et al., Entangled quantum key distribution over two free-space optical links. Opt. Express 16, 16840–16853 (2008)

    Article  ADS  Google Scholar 

  13. Y. Cao et al., Entanglement-based quantum key distribution with biased basis choice via free space. Opt. Express 21, 27260–27268 (2013)

    Article  ADS  Google Scholar 

  14. J.-Y. Wang et al., Direct and full-scale experimental verifications towards ground-satellite quantum key distribution. Nat. Photon. 7, 387–393 (2013)

    Article  ADS  Google Scholar 

  15. S. Nauerth et al., Air-to-ground quantum communication. Nat. Photon. 7, 382–386 (2013)

    Article  ADS  Google Scholar 

  16. D. Rideout et al., Fundamental quantum optics experiments conceivable with satellites—reaching relativistic distances and velocities. Class. Q. Grav. 29, 224011 (2012)

    Article  ADS  Google Scholar 

  17. J.S. Bell, On the Einstein Podolsky Rosen paradox. Physics 1, 195 (1964)

    Google Scholar 

  18. D. Salart et al., Reply to the “Comment on: Testing the speed of ‘spooky action at a distance”’. arXiv:0810.4607

  19. J. Clauser et al., Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880 (1969)

    Article  ADS  Google Scholar 

  20. A. Fedrizzi et al., High-fidelity transmission of entanglement over a high-loss free-space channel. Nat. Phys. 5, 389–392 (2009)

    Article  MathSciNet  Google Scholar 

  21. N. Gisin et al., Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)

    Article  ADS  Google Scholar 

  22. C.H. Bennett et al., Teleporting an unknown quantum state via dual classic and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. D. Boschi et al., Experimental realization of teleporting an unknown pure quantum state via dual classical Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 80, 1121–1125 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. R. Ursin et al., Quantum teleportation across the Danube. Nature 430, 849 (2004)

    Article  ADS  Google Scholar 

  25. Y.-A. Chen et al., Memory-built-in quantum teleportation with photonic and atomic qubits. Nat. Phys. 4, 43.1–43.14 (2002)

    Google Scholar 

  26. D. Bouwmeester et al., Experimental quantum teleportation. Nature 390, 575–579 (1997)

    Article  ADS  Google Scholar 

  27. S. Popescu, Teleportation versus Bell’s inequalities. What is nonlocality? Phys. Rev. Lett. 72, 797–799 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. C.H. Bennett, G. Brassard, Quantum cryptography: public key distribution and coin tossing, In Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing (New York, 1985), p. 175

    Google Scholar 

  29. C.H. Bennett, Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. A.K. Ekert, Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. C.H. Bennett et al., Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68, 557–559 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. C.H. Bennett et al., Experimental quantum cryptography. J. Cryptol. 5, 3–28 (1992)

    Article  MATH  Google Scholar 

  33. P. Villoresi et al., Experimental verification of the feasibility of a quantum channel between space and Earth. New J. Phys. 10, 033038 (2008)

    Article  ADS  Google Scholar 

  34. C. Bonato et al., Feasibility of satellite quantum key distribution. New J. Phys. 11, 045017 (2009)

    Article  ADS  Google Scholar 

  35. J. Yin et al., Experimental quasi-single-photon transmission from satellite to earth. Opt. Express 21, 20032–20040 (2013)

    Article  ADS  Google Scholar 

  36. H.-K. Lo et al., Efficient quantum key distribution scheme and a proof of its unconditional security. J. Cryptol. 18, 133–165 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  37. M. Blum, in Digest of Papers Spring COMPCON’82. High Technology in the Information Industry (IEEE Computer Society, New York, 1982), p. 133

    Google Scholar 

  38. G. Brassard et al., in Proceedings of the 10th Annual International Cryptology Conference, Advances in Cryptology—CRYPTO’9, vol. 537 (Springer, New York, 1991), p. 49

    Google Scholar 

  39. S. Goldwasser et al., in Proceedings of the 17th Annual ACM Symposium on Theory of Computing, STOC’85 (ACM, New York, 1985), p. 291

    Google Scholar 

  40. O. Goldreich et al., in Proceedings of the 27th Annual Symposium on Foundations of Computer Science, FOCS’86 (IEEE Computer Society, New York, 1986), p. 174

    Google Scholar 

  41. C.H. Bennett et al., in Proceedings of the 11th Annual International Cryptology Conference, Advances in Cryptology—CRYPTO’91, vol. 576 (Springer, 1991), p. 351

    Google Scholar 

  42. D. Unruh, in Proceedings of the 29th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Advances in Cryptology—EUROCRYPT 2010, vol. 6110 (Springer, New York, 2010), p. 486

    Google Scholar 

  43. J. Kilian, in Proceedings of the 20th Annual ACM Symposium on Theory of Computing, STOC’88 (ACM, New York, 1988), p. 20

    Google Scholar 

  44. T. Lunghi et al., Phys. Rev. Lett. 111, 180504 (2013)

    Article  ADS  Google Scholar 

  45. J.S. Bell, Speakable and Unspeakable in Quantum Mechanics (Cambridge University Press, Cambridge, England, 1987), p. 139

    Google Scholar 

  46. P.H. Eberhard, Quantum Theory and Pictures of Reality (Springer, Berlin, 1989)

    Google Scholar 

  47. J.-D. Bancal, Quantum non-locality based on finite-speed causal influences leads to superluminal signalling. Nat. Phys. 8, 867–870 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by the National Fundamental Research Program (under Grant No. 2011CB921300 and 2013CB336800), the “Strategic Priority Research Program” of the Chinese Academy of Sciences (under Grant No. XDA04020000), the NNSF of China and the Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Wei Pan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cao, Y., Zhang, Q., Peng, CZ., Pan, JW. (2017). Quantum Information Experiments with Free-Space Channels. In: Bertlmann, R., Zeilinger, A. (eds) Quantum [Un]Speakables II. The Frontiers Collection. Springer, Cham. https://doi.org/10.1007/978-3-319-38987-5_27

Download citation

Publish with us

Policies and ethics