Skip to main content

Analysing Multiparticle Quantum States

  • Chapter
  • First Online:
Quantum [Un]Speakables II

Part of the book series: The Frontiers Collection ((FRONTCOLL))

Abstract

The analysis of multiparticle quantum states is a central problem in quantum information processing. This task poses several challenges for experimenters and theoreticians. We give an overview over current problems and possible solutions concerning systematic errors of quantum devices, the reconstruction of quantum states, and the analysis of correlations and complexity in multiparticle density matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This means that both, measurements and states are described by the corresponding N-fold tensor products. While such a property can be inferred for the states with the help of the de Finetti theorem [1], one should be aware that its exchangeability requirements do not apply to experiments where one actively measures first all the \(s=1\) measurements, followed by all \(s=2\) measurements and so on.

  2. 2.

    Since one typically likes to leave the choice of appropriate levels of \(\alpha \) to the reader one can also report the p-value [7] of the observed data: It is the smallest \(\alpha \) with which we would have still said “incompatible” with the test.

  3. 3.

    The new operators \(X_{r|s}\) may be necessary, since the \(M_{r|s}\) can be overcomplete or not orthogonal.

References

  1. R. Renner, Nat. Phys. 3, 645 (2007)

    Article  Google Scholar 

  2. R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  3. O. Gühne, G. Tóth, Phys. Rep. 474, 1 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  4. T. Moroder, M. Keyl, N. Lütkenhaus, J. Phys. A: Math. Theor. 41, 275302 (2008)

    Article  ADS  Google Scholar 

  5. W. Hoeffding, J. Am. Stat. Assoc. 58, 301 (1963)

    Article  MathSciNet  Google Scholar 

  6. T. Moroder, M. Kleinmann, P. Schindler, T. Monz, O. Gühne, R. Blatt, Phys. Rev. Lett. 110, 180401 (2013)

    Article  ADS  Google Scholar 

  7. A.F. Mood, Introduction to the Theory of Statistics (McGraw-Hill Inc., 1974)

    Google Scholar 

  8. L. Schwarz, S.J. van Enk, Phys. Rev. Lett. 106, 180501 (2011)

    Article  ADS  Google Scholar 

  9. N.K. Langford, New J. Phys. 15, 035003 (2013)

    Article  ADS  Google Scholar 

  10. S.J. van Enk, R. Blume-Kohout, New J. Phys. 15, 025024 (2013)

    Article  MathSciNet  Google Scholar 

  11. C. Schwemmer, L. Knips, D. Richart, H. Weinfurter, T. Moroder, M. Kleinmann, O. Gühne, Phys. Rev. Lett. 114, 080403 (2015)

    Article  ADS  Google Scholar 

  12. Z. Hradil, Phys. Rev. A 55, 1561(R) (1997)

    Article  ADS  MathSciNet  Google Scholar 

  13. D.F.V. James, P.G. Kwiat, W.J. Munro, A.G. White, Phys. Rev. A 64, 052312 (2001)

    Article  ADS  Google Scholar 

  14. J. Shang, H.K. Ng, A. Sehrawat, X. Li, B.-G. Englert, New J. Phys. 15, 123026 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  15. M. Christandl, R. Renner, Phys. Rev. Lett. 109, 120403 (2012)

    Article  ADS  Google Scholar 

  16. A. Peres, Phys. Rev. Lett. 77, 1413 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  17. B. Jungnitsch, T. Moroder, O. Gühne, Phys. Rev. Lett. 106, 190502 (2011)

    Article  ADS  Google Scholar 

  18. L. Vandenberghe, S. Boyd, SIAM Rev. 38, 49 (1996)

    Article  MathSciNet  Google Scholar 

  19. See the program PPTmixer. http://mathworks.com/matlabcentral/fileexchange/30968

  20. M. Hofmann, T. Moroder, O. Gühne, J. Phys. A: Math. Theor. 47, 155301 (2014)

    Article  ADS  Google Scholar 

  21. L. Novo, T. Moroder, O. Gühne, Phys. Rev. A 88, 012305 (2013)

    Article  ADS  Google Scholar 

  22. X. Chen, P. Yu, L. Jiang, M. Tian, Phys. Rev. A 87, 012322 (2013)

    Article  ADS  Google Scholar 

  23. G. Tóth, T. Moroder, O. Gühne, Phys. Rev. Lett. 114, 160501 (2015)

    Article  ADS  Google Scholar 

  24. M. Huber, R. Sengupta, Phys. Rev. Lett. 113, 100501 (2014)

    Article  ADS  Google Scholar 

  25. C. Lancien, O. Gühne, R. Sengupta, M. Huber, J. Phys. A: Math. Theor. 48 505302 (2015)

    Google Scholar 

  26. S. Beigi, P.W. Shor, J. Math. Phys. 51, 042202 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  27. T. Kahle, E. Olbrich, J. Jost, N. Ay, Phys. Rev. E 79, 026201 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  28. S. Amari, I.E.E.E. Trans, Inf. Theory 47, 1701 (2001)

    Article  Google Scholar 

  29. N. Ay, A. Knauf, Kybernetika 42, 517 (2007)

    MathSciNet  Google Scholar 

  30. D.L. Zhou, Phys. Rev. Lett. 101, 180505 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  31. D.L. Zhou, Phys. Rev. A 80, 022113 (2009)

    Article  ADS  Google Scholar 

  32. T. Galla, O. Gühne, Phys. Rev. E 85, 046209 (2012)

    Article  ADS  Google Scholar 

  33. S. Niekamp, T. Galla, M. Kleinmann, O. Gühne, J. Phys. A: Math. Theor. 46, 125301 (2013)

    Article  ADS  Google Scholar 

  34. D.L. Zhou, Commun. Theor. Phys. 61, 187 (2014)

    Article  ADS  Google Scholar 

  35. M. Van den Nest, K. Luttmer, W. Dür, H.J. Briegel, Phys. Rev. A 77, 012301 (2008)

    Article  ADS  Google Scholar 

  36. N. Linden, S. Popescu, W.K. Wootters, Phys. Rev. Lett. 89, 207901 (2002)

    Article  ADS  Google Scholar 

  37. F. Huber, O. Gühne, Phys. Rev. Lett. 117, 010403 (2016)

    Google Scholar 

Download references

Acknowledgments

We thank Rainer Blatt, Tobias Galla, Bastian Jungnitsch, Martin Hofmann, Lukas Knips, Thomas Monz, Sönke Niekamp, Daniel Richart, Philipp Schindler, Christian Schwemmer, and Harald Weinfurter for discussions and collaborations on the presented topics. Furthermore, we thank Mariami Gachechiladze, Felix Huber, and Nikolai Miklin for comments on the manuscript. This work has been supported by the EU (Marie Curie CIG 293993/ENFOQI, ERC Starting Grant GEDENTQOPT, ERC Consolidator Grant 683107/TempoQ), the FQXi Fund (Silicon Valley Community Foundation), and the DFG (Forschungsstipendium KL 2726/2-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Otfried Gühne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gühne, O., Kleinmann, M., Moroder, T. (2017). Analysing Multiparticle Quantum States. In: Bertlmann, R., Zeilinger, A. (eds) Quantum [Un]Speakables II. The Frontiers Collection. Springer, Cham. https://doi.org/10.1007/978-3-319-38987-5_21

Download citation

Publish with us

Policies and ethics