Skip to main content

Copper-Catalyzed α-Amination of Phosphonates and Phosphine Oxides: A Direct Approach to α-Amino Phosphonic Acids and Derivatives

  • Chapter
  • First Online:
Copper-Catalyzed Electrophilic Amination of sp2 and sp3 C−H Bonds

Part of the book series: Springer Theses ((Springer Theses))

  • 458 Accesses

Abstract

A direct approach to important α-amino phosphonic acid derivatives has been developed by using copper-catalyzed electrophilic amination of α-phosphonate zincates with O-acyl hydroxylamines. This amination provides the first example of C–N bond formation which directly introduces acyclic and cyclic amines to the α-position of phosphonates in one step. The reaction also demonstrates high efficiency on a broad phosphonate substrate scope.

Portions of this chapter have been published: (a) McDonald, S. L.; Wang, Q. “Copper-Catalyzed α-Amination of Phosphonates and Phosphine Oxides: A Direct Approach to α-Amino Phosphonic Acids and Derivatives,” Angew. Chem. Int. Ed. 2014, 53, 1867–1871; (b) McDonald, S. L.; Wang, Q. “α-Amination of Phosphonates: A Direct Synthesis of α-Amino Phosphonic Acids and Their Derivatives,” Synlett 2014, 25, 2233–2238.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mucha A, Kafarski P, Berlicki L (2011) Remarkable potential of the α-Aminophosphonate/Phosphinate structural motif in medicinal chemistry. J Med Chem 54(17):5955–5980

    Google Scholar 

  2. Forlani G, Berlicki L, Duo M, Dziedziola G, Giberti S, Bertazzini M, Kafarski P (2013) Synthesis and evaluation of effective inhibitors of plant δ1-Pyrroline-5-Carboxylate reductase. J Agric Food Chem 61(28):6792–6798

    Google Scholar 

  3. Forlani G, Occhipinti A, Berlicki L, Dziedziola G, Wieczorek A, Kafarski P (2008) Tailoring the structure of aminobisphosphonates to target plant P5C reductase. J Agric Food Chem 56(9):3193–3199

    Google Scholar 

  4. Allen JG, Atherton FR, Hall MJ, Hassall CH, Holmes SW, Lambert RW, Nisbet LJ, Ringrose PS (1978) Phosphonopeptides, a new class of synthetic antibacterial agents. Nature 272:56–58

    Google Scholar 

  5. Atherton FR, Hassall CH, Lambert RW (1986) Synthesis and structure-activity relationships of antibacterial phosphonopeptides incorporating (1-aminoethyl)phosphonic acid and (aminomethyl)phosphonic acid. J Med Chem 29(1):29–40

    Google Scholar 

  6. Chen MH, Chen Z, Song BA, Bhadury PS, Yang S, Cai XJ, Hu DY, Xue W, Zeng S (2009) Synthesis and antiviral activities of Chiral Thiourea derivatives containing an α-Aminophosphonate Moiety. J Agric Food Chem 57(4):1383–1388

    Google Scholar 

  7. Hu DY, Wan QQ, Yang S, Song BA, Bhadury PS, Jin LH, Yan K, Liu F, Chen Z, Xue W (2008) Synthesis and Antiviral activities of Amide derivatives containing the α-Aminophosphonate Moiety. J Agric Food Chem 56(3):998–1001

    Google Scholar 

  8. Long N, Cai X-J, Song BA, Yang S, Chen Z, Bhadury PS, Hu DY, Jin L-H, Xue W (2008) Synthesis and Antiviral Activities of Cyanoacrylate derivatives containing an α-Aminophosphonate Moiety. J Agric Food Chem 56(13):5242–5246

    Google Scholar 

  9. Kafarski P, Lejczak B (2001) Aminophosphonic acids of potential medical importance. Curr Med Chem Anticancer Agents 1(3):301–312

    Google Scholar 

  10. Lavielle G, Hautefaye P, Schaeffer C, Boutin JA, Cudennec CA, Pierre A (1991) New α-Amino phosphonic acid-derivatives of Vinblastine - chemistry and Antitumor-activity. J Med Chem 34(7):1998–2003

    Google Scholar 

  11. Allen MC, Fuhrer W, Tuck B, Wade R, Wood JM (1989) Renin inhibitors. Synthesis of transition-state analog inhibitors containing phosphorus acid derivatives at the scissile bond. J Med Chem 32(7):1652–1661

    Google Scholar 

  12. Bird J, Demello RC, Harper GP, Hunter DJ, Karran EH, Markwell RE, Mileswilliams AJ, Rahman SS, Ward RW (1994) Synthesis of novel N-phosphonoalkyl dipeptide inhibitors of human collagenase. J Med Chem 37(1):158–169

    Google Scholar 

  13. Smith WW, Bartlett PA (1998) Macrocyclic inhibitors of penicillopepsin. 3. design, synthesis, and evaluation of an inhibitor bridged between P2 and P1’. J Am Chem Soc 120(19):4622–4628

    Google Scholar 

  14. Kafarski P, Lejczak B (1991) Biological activity of aminophosphonic acids. Phosphorus Sulfur 63:193–215

    Google Scholar 

  15. Kudzin ZH, Kudzin MH, Drabowicz J, Stevens CV (2011) Aminophosphonic acids - Phosphorus analogues of natural amino acids. Part 1: Syntheses of α-Aminophosphonic acids. Curr Org Synth 15(12):2015–2071

    Google Scholar 

  16. Kukhar VP, Soloshonok VA, Solodenko VA (1994) Asymmetric-synthesis of phosphorus analogs of amino-acids. Phosphorus Sulfur 92:239–264

    Google Scholar 

  17. Denmark SE, Chatani N, Pansare SV (1992) Asymmetric electrophilic amination of Chiral phosphorus-stabilized Anions. Tetrahedron 489(11):2191–2208

    Google Scholar 

  18. Hanessian S, Bennani YL (1994) Electrophilic Amination and Azidation of Chiral α-Alkyl phosphonamides: Asymmetric syntheses of α-Amino α-Alkyl phosphonic acids. Synthesis 1994(12):1272–1274

    Google Scholar 

  19. Bernardi L, Zhuang W, Jørgensen KA (2005) An easy approach to optically active α-Amino phosphonic acid derivatives by Chiral Zn(II)-Catalyzed enantioselective amination of phosphonates. J Am Chem Soc 127(16):5772–5773

    Google Scholar 

  20. Pudovik AN (1952) Dokl Akad Nauk SSSR 74:1528

    Google Scholar 

  21. Pudovik AN, Konovalova I (1979) Addition reactions of Esters of phosphorus(III) acids with unsaturated systems. Synthesis 1979(2):81

    Google Scholar 

  22. Sasai H, Arai S, Tahara Y, Shibasaki M (1995) Catalytic asymmetric synthesis of α-Amino phosphonates using Lanthanoid-Potassium-BINOL complexes. J Org Chem 60(21):6656–6657

    Google Scholar 

  23. Smith AB, Yager KM, Taylor CM (1995) Enantioselective synthesis of diverse α-Amino phosphonate diesters. J Am Chem Soc 117(44):10879–10888

    Google Scholar 

  24. Lefebvre IM, Evans SA (1997) Studies toward the asymmetric synthesis of α-Amino phosphonic acids via the addition of phosphites to Enantiopure Sulfinimines. J Org Chem 62(22):7532–7533

    Google Scholar 

  25. Davis FA, Lee S, Yan H, Titus DD (2001) Asymmetric synthesis of quaternary α-Amino phosphonates using Sulfinimines. Org Lett 3(11):1757–1760

    Google Scholar 

  26. Joly GD, Jacobsen EN (2004) Thiourea-Catalyzed Enantioselective Hydrophosphonylation of Imines: Practical access to enantiomerically enriched α-Amino phosphonic acids. J Am Chem Soc 126(13):4102–4103

    Google Scholar 

  27. Abell JP, Yamamoto H (2008) Catalytic enantioselective pudovik reaction of Aldehydes and Aldimines with Tethered Bis(8-quinolinato) (TBOx) Aluminum complex. J Am Chem Soc 130(32):10521–10523

    Google Scholar 

  28. Nakamura S, Hayashi M, Hiramatsu Y, Shibata N, Funahashi Y, Toru T (2009) Catalytic Enantioselective Hydrophosphonylation of Ketimines using Cinchona Alkaloids. J Am Chem Soc 131(51):18240–1841

    Google Scholar 

  29. Ingle GK, Liang YX, Mormino MG, Li GL, Fronczek FR, Antilla JC (2011) Chiral Magnesium BINOL phosphate-catalyzed phosphination of imines: Access to enantioenriched α-Amino phosphine oxides. Org Lett 13(6):2054–2057

    Google Scholar 

  30. Gao Y, Huang Z, Zhuang R, Xu J, Zhang P, Tang G, Zhao Y (2013) Direct transformation of Amides into α-Amino phosphonates via a reductive phosphination process. Org Lett 15(16):4214–4217

    Google Scholar 

  31. Fields EK (1952) The synthesis of esters of substituted Amino phosphonic acids. J Am Chem Soc 74(6):1528–1531

    Google Scholar 

  32. Kabachnik MI, Medved TY (1953) New method for the synthesis of 1-aminoalkylphosphonic acids. Bull Acad Sci USSR 2(5):769–777

    Google Scholar 

  33. Cheng X, Goddard R, Buth G, List B (2008) Direct catalytic asymmetric three-component Kabachnik–fields reaction. Angew Chem Int Ed 47(27):5079–5081

    Google Scholar 

  34. Hanessian S, Bennani YL (1990) A versatile asymmetric synthesis of α-Amino α-Alkyl-phosphonic acids of high enantiomeric purity. Tetrahedron Lett 31(45):6465–6468

    Google Scholar 

  35. Groth U, Richter L, Schollkopf U (1992) Asymmetric-synthesis of enantiomerically pure phosphonic analogs of Glutamic-acid and proline. Tetrahedron 48(1):117–122

    Google Scholar 

  36. Hannour S, Roumestant ML, Viallefont P, Riche C, Martinez J, El Hallaoui A, Ouazzani F (1998) Asymmetric synthesis of (2S,3R,4R)-ethoxycarbonylcyclopropyl phosphonoglycine. Tetrahedron: Asymmetry 9(13):2329–2332

    Google Scholar 

  37. Kobayashi S, Kiyohara H, Nakamura Y, Matsubara R (2004) Catalytic asymmetric synthesis of α-Amino phosphonates using enantioselective carbon-carbon bond-forming reactions. J Am Chem Soc 126(21):6558–6559

    Google Scholar 

  38. Burk MJ, Stammers TA, Straub JA (1999) Enantioselective synthesis of α-Hydroxy and α-Amino phosphonates via catalytic asymmetric Hydrogenation. Org Lett 1(3):387–390

    Google Scholar 

  39. Hammerschmidt F, Hanbauer M (2000) Transformation of Arylmethylamines into α-Aminophosphonic acids via metalated phosphoramidates: rearrangement of partly configurationally stable N-Phosphorylated α-Aminocarbanions. J Org Chem 65(19):6121–6131

    Google Scholar 

  40. Gridnev ID, Yasutake M, Imamoto T, Beletskaya IPP (2004) Asymmetric hydrogenation of α,β-unsaturated phosphonates with Rh-BisP* and Rh-MiniPHOS catalysts: Scope and mechanism of the reaction. Proc Natl Acad Sci USA 101(15):5385–5390

    Google Scholar 

  41. Goulioukina NS, Shergold IA, Bondarenko GN, Ilyin MM, Davankov VA, Beletskaya IP (2012) Palladium-Catalyzed Asymmetric Hydrogenation of N-Hydroxy-α-imino Phosphonates using Brønsted acid as activator: The first catalytic Enantioselective approach to Chiral N-Hydroxy-α-Amino phosphonates. Adv Synth Catal 354(14–15):2727–2733

    Google Scholar 

  42. Jommi G, Miglierini G, Pagliarin R, Sello G, Sisti M (1992) Studies toward a model for predicting the Diastereoselectivity in the electrophilic amination of Chiral 1,3,2-Oxazaphospholanes. Tetrahedron 48(35):7275–7288

    Google Scholar 

  43. Pagliarin R, Papeo G, Sello G, Sisti M, Paleari L (1996) Design of β-amino alcohols as chiral auxiliaries in the electrophilic amination of 1,3,2-oxazaphospholanes. Tetrahedron 52(43):13783–13794

    Google Scholar 

  44. Jiang Q, Ren Y, Feng J (2008) Direct binding with histone deacetylase 6 mediates the reversible recruitment of parkin to the centrosome. J Neurosci 28(48):12993–13002

    Google Scholar 

  45. Naydenova ED, Todorov PT, Troev KD (2010) Recent synthesis of aminophosphonic acids as potential biological importance. Amino Acids 38(1):23–30

    Google Scholar 

  46. Ordonez M, Rojas-Cabrera H, Cativiela C (2009) An overview of Stereoselective synthesis of α-Aminophosphonic acids and derivatives. Tetrahedron 65(1):17–49

    Google Scholar 

  47. Berman AM, Johnson JS (2004) Copper-catalyzed electrophilic amination of diorganozinc reagents. J Am Chem Soc 126(18):5680–5681

    Google Scholar 

  48. Berman AM, Johnson JS (2005) Copper-catalyzed electrophilic amination of functionalized Diarylzinc reagents. J Org Chem 70(1):364–366

    Google Scholar 

  49. Berman AM, Johnson JS (2005) Nickel-catalyzed electrophilic amination of organozinc halides. Synlett 2005(11):1799–1801

    Google Scholar 

  50. Berman AM, Johnson JS (2006) Copper-catalyzed electrophilic amination of organozinc nucleophiles: Documentation of O-Benzoyl Hydroxylamines as broadly useful R2N(+) and RHN(+) Synthons. J Org Chem 71(1):219–224

    Google Scholar 

  51. Hlavinka ML, Hagadorn JR (2006) Structures of Zinc Ketone Enolates. Organometallics 25(14):3501–3507

    Google Scholar 

  52. Hlavinka ML, Hagadorn JR (2007) Zn(tmp)2: A versatile base for the selective functionalization of C−H Bonds. Organometallics 26(17):4105–4108

    Google Scholar 

  53. Rees WS, Just O, Schumann H, Weimann R (1998) First structural characterization of a zinc-bis(dialkylamide) compound. Polyhedron 17(5–6):1001–1004

    Google Scholar 

  54. Matsuda N, Hirano K, Satoh T, Miura M (2012) Copper-catalyzed amination of Arylboronates with N,N-Dialkylhydroxylamines. Angew Chem Int Ed 51(15):3642–3645

    Google Scholar 

  55. Noack M, Göttlich R (2002) Copper(I) catalysed cyclisation of unsaturated N-Benzoyloxyamines: An Aminohydroxylation via radicals. Chem Commun 2002(5):536–537

    Google Scholar 

  56. Haas B, Mosrin M, Ila H, Malakhov V, Knochel P (2011) Regio- and chemoselective metalation of Arenes and Heteroarenes using hindered metal Amide bases. Angew Chem Int Ed 50(42):9794–9824

    Google Scholar 

  57. Bresser T, Monzon G, Mosrin M, Knochel P (2010) Scaleable preparation of sensitive functionalized Aromatics and Heteroaromatics via directed metalation using tmpZnCl·LiCl. Org Process Res Dev 14(6):1299–1303

    Google Scholar 

  58. Bresser T, Mosrin M, Monzon G, Knochel P (2010) Regio- and Chemoselective Zincation of sensitive and moderately activated Aromatics and Heteroaromatics using TMPZnCl·LiCl. J Org Chem 75(14):4686–4695

    Google Scholar 

  59. Mosrin M, Bresser T, Knochel P (2009) Regio- and Chemoselective multiple functionalization of Chloropyrazine derivatives. Application to the synthesis of Coelenterazine. Org Lett 11(15):3406–3409

    Google Scholar 

  60. Mosrin M, Knochel P (2009) TMPZnCl·LiCl: A new active selective base for the directed Zincation of sensitive aromatics and Heteroaromatics. Org Lett 11(8):1837–1840

    Google Scholar 

  61. Unsinn A, Ford MJ, Knochel P (2013) New preparation of TMPZnCl·LiCl by Zn insertion into TMPCl. Application to the functionalization of dibromodiazines. Org Lett 15(5):1128–1131

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stacey L. McDonald .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

McDonald, S.L. (2016). Copper-Catalyzed α-Amination of Phosphonates and Phosphine Oxides: A Direct Approach to α-Amino Phosphonic Acids and Derivatives. In: Copper-Catalyzed Electrophilic Amination of sp2 and sp3 C−H Bonds. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-38878-6_3

Download citation

Publish with us

Policies and ethics