Skip to main content

Selective α-Amination and α-Acylation of Esters and Amides via Dual Reactivity of O-Acylhydroxylamines Toward Zinc Enolates

  • Chapter
  • First Online:
Copper-Catalyzed Electrophilic Amination of sp2 and sp3 C−H Bonds

Part of the book series: Springer Theses ((Springer Theses))

  • 564 Accesses

Abstract

α-Amino carbonyl and 1,3-dicarbonyl compounds are highly desirable motifs in organic synthesis and are present in many pharmaceutically and biologically relevant molecules. Selective α-amination and α-acylation of esters and amides have been developed, employing O-acylhydroxylamines as a dually reactive aminating and acylating reagent. Treatment of zinc enolates with O-acylhydroxylamines provides solely 1,3-dicarbonyl compounds under mild conditions. Introduction of a copper catalyst into the system shifts the reactivity entirely, yielding a-amination products exclusively.

Portions of this chapter have been published: McDonald, S.L.; Wang, Q. “Selective α-amination and α-acylation of esters and amides via dual reactivity of O-acylhydroxylamines toward zinc enolates,” Chem. Commun. 2014, 50, 2535–2538.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ohfune Y (1992) Stereoselective routes toward the synthesis of unusual amino-acids. Accounts Chem Res 25(8):360–366

    Google Scholar 

  2. Duthaler RO (1994) Recent developments in the stereoselective synthesis of α-aminoacids. Tetrahedron 50(6):1539–1650

    Google Scholar 

  3. Kel’in AV, Maioli A (2003) Recent advances in the chemistry of 1,3-diketones: Structural modifications and synthetic applications. Curr Org Chem 7(18):1855–1886

    Google Scholar 

  4. Topol EJ, Schork NJ (2011) Catapulting clopidogrel pharmacogenomics forward. Nat Med 17(1):40–41

    Google Scholar 

  5. O’Brien JJ, Campoli-Richards DM (1989) Acyclovir. An updated review of its antiviral activity, pharmacokinetic properties and therapeutic efficacy. Drugs 37(3):233–309

    Google Scholar 

  6. Andrushko V, Andrushko N (2013) Stereoselective synthesis of drugs and natural products. Wiley, New York

    Google Scholar 

  7. Hili R, Yudin AK (2006) Making carbon-nitrogen bonds in biological and chemical synthesis. Nat Chem Biol 2(6):284–287

    Google Scholar 

  8. Greck C, Genet JP (1997) Electrophilic amination: New synthetic applications. Synlett 1997(7):741–748

    Google Scholar 

  9. Dembech P, Seconi G, Ricci A (2000) The electrophilic amination of carbanions: an unconventional new entry to C–N bond formation. Chem Eur J 6(8):1281–1286

    Google Scholar 

  10. Erdik E (2004) Electrophilic α-Amination of carbonyl compounds. Tetrahedron 60(40):8747–8782

    Google Scholar 

  11. Greck C, Drouillat B, Thomassigny C (2004) Asymmetric electrophilic α-Amination of carbonyl groups. Eur J Org Chem 2004(7):1377–1385

    Google Scholar 

  12. Ciganek E (2009) Electrophilic amination of carbanions, enolates, and their surrogates. Wiley, New York

    Google Scholar 

  13. Janey JM (2005) Recent advances in catalytic, enantioselective α-Aminations and α-Oxygenations of carbonyl compounds. Angew Chem Int Ed 44(28):4292–4300

    Google Scholar 

  14. Erdik E, Ay M (1989) Electrophilic amination of carbanions. Chem Rev 89(8):1947–1980

    Google Scholar 

  15. Seebach D (1979) Methods of reactivity umpolung. Angew Chem Int Ed 18(4):239–258

    Google Scholar 

  16. Barker TJ, Jarvo ER (2011) Developments in transition-metal-catalyzed reactions using electrophilic nitrogen sources. Synthesis 2011(24):3954–3964

    Google Scholar 

  17. Juhl K, Jørgensen KA (2002) Catalytic asymmetric direct α-Amination reactions of 2-Keto Esters:  a simple synthetic approach to optically active syn-β-Amino-α-hydroxy Esters. J Am Chem Soc 124(11):2420–2421

    Google Scholar 

  18. Marigo M, Juhl K, Jørgensen KA (2003) Catalytic, highly enantioselective, direct amination of β-Ketoesters. Angew Chem Int Ed 42(12):1367–1369

    Google Scholar 

  19. List B (2002) Direct catalytic asymmetric α-Amination of aldehydes. J Am Chem Soc 124(20):5656–5657

    Google Scholar 

  20. Kumaragurubaran N, Juhl K, Zhuang W, Bøgevig A, Jørgensen KA (2002) Direct L-proline-catalyzed asymmetric α-Amination of ketones. J Am Chem Soc 124(22):6254–6255

    Google Scholar 

  21. Bøgevig A, Juhl K, Kumaragurubaran N, Zhuang W, Jørgensen KA (2002) Direct organo-catalytic asymmetric α-Amination of aldehydes—a simple approach to optically active α-Amino aldehydes, α-Amino alcohols, and α-Amino acids. Angew Chem Int Ed 41(10):1790–1793

    Google Scholar 

  22. Evans DA, Nelson SG (1997) Chiral Magnesium Bis(sulfonamide) complexes as catalysts for the merged enolization and enantioselective amination of N-Acyloxazolidinones. A catalytic approach to the synthesis of arylglycines. J Am Chem Soc 119(27):6452–6453

    Google Scholar 

  23. Bui T, Hernandez-Torres G, Milite C, Barbas CF (2010) Highly enantioselective organocatalytic α-Amination reactions of aryl oxindoles: developing designer multifunctional alkaloid catalysts. Org Lett 12(24):5696–5699

    Google Scholar 

  24. Hasegawa Y, Watanabe M, Gridnev ID, Ikariya T (2008) Enantioselective direct amination of α-Cyanoacetates catalyzed by bifunctional chiral ru and ir amido complexes. J Am Chem Soc 130(7):2158–2159

    Google Scholar 

  25. Konishi H, Lam TY, Malerich JP, Rawal VH (2010) Enantioselective α-Amination of 1,3-Dicarbonyl Compounds using squaramide derivatives as hydrogen bonding catalysts. Org Lett 12(9):2028–2031

    Google Scholar 

  26. Mashiko T, Kumagai N, Shibasaki M (2009) Managing highly coordinative substrates in asymmetric catalysis: a catalytic asymmetric amination with a lanthanum-based ternary catalyst. J Am Chem Soc 131(41):14990–14999

    Google Scholar 

  27. Nandakumar MV, Ghosh S, Schneider C (2009) Enantioselective synthesis of a novel chiral 2,9-disubstituted 1,10-phenanthroline and first applications in asymmetric catalysis. Eur J Org Chem 2009(36):6393–6398

    Google Scholar 

  28. Simon L, Goodman JM (2012) Mechanism of amination of beta-Keto esters by Azadicarboxylates catalyzed by an axially chiral guanidine: Acyclic Keto esters react through an E Enolate. J Am Chem Soc 134(40):16869–16876

    Google Scholar 

  29. Terada M, Nakano M, Ube H (2006) Axially chiral guanidine as highly active and enantioselective catalyst for electrophilic amination of unsymmetrically substituted 1,3-dicarbonyl compounds. J Am Chem Soc 128(50):16044–16045

    Google Scholar 

  30. Zhou F, Ding M, Liu YL, Wang CH, Ji CB, Zhang YY, Zhou J (2011) Organocatalytic Asymmetric α-Amination of Unprotected 3-Aryl and 3-Aliphatic substituted oxindoles using Di-tert-butyl Azodicarboxylate. Adv Synth Catal 353(16):2945–2952

    Google Scholar 

  31. Scriven EFV, Turnbull K (1988) Azides: their preparation and synthetic uses. Chem Rev 88(2):297–368

    Google Scholar 

  32. Kano T, Ueda M, Takai J, Maruoka K (2006) Direct asymmetric hydroxyamination reaction catalyzed by an axially chiral secondary amine catalyst. J Am Chem Soc 128(18):6046–6047

    Google Scholar 

  33. Lopez-Cantarero J, Cid MB, Poulsen TB, Bella M, Ruano JLG, Jørgensen KA (2007) Intriguing behavior of cinchona alkaloids in the enantioselective organocatalytic hydroxyamination of α-Substituted-α-cyanoacetates. J Org Chem 72(18):7062–7065

    Google Scholar 

  34. Momiyama N, Yamamoto H (2002) Simple synthesis of α-Hydroxyamino carbonyl compounds: new scope of the nitroso aldol reaction. Org Lett 4(21):3579–3582

    Google Scholar 

  35. Momiyama N, Yamamoto H (2005) Brønsted acid catalysis of achiral enamine for regio- and enantioselective nitroso aldol synthesis. J Am Chem Soc 127(4):1080–1081

    Google Scholar 

  36. Sandoval D, Frazier CP, Bugarin A, de Alaniz JR (2012) Electrophilic α-Amination reaction of β-Ketoesters using N-Hydroxycarbamates: merging aerobic oxidation and lewis acid catalysis. J Am Chem Soc 134(46):18948–18951

    Google Scholar 

  37. Shen K, Liu XH, Wang G, Lin LL, Feng XM (2011) Facile and efficient enantioselective hydroxyamination reaction: synthesis of 3-Hydroxyamino-2-Oxindoles using nitrosoarenes. Angew Chem Int Ed 50(20):4684–4688

    Google Scholar 

  38. Yanagisawa A, Fujinami T, Oyokawa Y, Sugita T, Yoshida K (2012) Catalytic Enantioselective N-Nitroso Aldol Reaction of γ,δ-Unsaturated δ-Lactones. Org Lett 14(10):2434–2437

    Google Scholar 

  39. Vidal J, Damestoy S, Guy L, Hannachi JC, Aubry A, Collet A (1997) N-Alkyloxycarbonyl-3-aryloxaziridines: their preparation, structure, and utilization as electrophilic amination reagents. Chem Eur J 3(10):1691–1709

    Google Scholar 

  40. Smulik JA, Vedejs E (2003) Improved reagent for electrophilic amination of stabilized carbanions. Org Lett 5(22):4187–4190

    Google Scholar 

  41. Miura T, Morimoto M, Murakami M (2012) Copper-catalyzed amination of silyl ketene acetals with N-Chloroamines. Org Lett 14(20):5214–5217

    Google Scholar 

  42. Yamada S, Oguri T, Shioiri TJ (1972) α-Amination of carboxylic acids: a new synthesis of α-Amino-acids. Chem Soc Chem Commun 1972(10):623a

    Google Scholar 

  43. Matsuda N, Hirano K, Satoh T, Miura M (2012) Copper-catalyzed amination of ketene silyl acetals with Hydroxylamines: electrophilic amination approach to α-Amino acids. Angew Chem Int Ed 51(47):11827–11831

    Google Scholar 

  44. Diels O, Behncke H (1924) Über derivate des cyclo-triazbutans. Chem Ber 57(4):653–656

    Google Scholar 

  45. Huisgen R, Jakab F (1954) Additionsreaktionen der NN-Doppelbindung II Der Chemismus einiger weiterer Reaktionen des Azodicarbonesters. Liebigs Ann Chem 590(1):37–54

    Google Scholar 

  46. Diels O (1922) Über die Azoesterreaktion der Amine und Enole. Liebgs Ann Chem 429(1):1–55

    Google Scholar 

  47. Regitz M, Mass G (1986) In diazo compounds, properties and synthesis. Academic, New York

    Google Scholar 

  48. Horiike M, Oda J, Inouye Y, Ohno M (1969) Synthesis of substituted aminomalonates by the reaction of chloramine with malonate carbanions. Agric Biol Chem 33(2):292–293

    Google Scholar 

  49. Oguri T, Shiori T, Yamada S (1975) Amino acids and peptides. XV.: a new synthesis of α-Amino acids by amination of α-Metalated carboxylic acids. Chem Pharm Bull 23(1):167–172

    Google Scholar 

  50. Mucha A, Kafarski P, Berlicki L (2011) Remarkable potential of the α-Aminophosphonate/Phosphinate structural motif in medicinal chemistry. J Med Chem 54(17):5955–5980

    Google Scholar 

  51. Naydenova ED, Todorov PT, Troev KD (2010) Recent synthesis of aminophosphonic acids as potential biological importance. Amino Acids 38(1):23–30

    Google Scholar 

  52. Kim DK, Shokova EA, Tafeenko VA, Kovalev VV (2014) Synthesis of 1,3-diketones from 3-(4-R-phenyl)propionic acids. Russian J Org Chem 50(4):464–468

    Google Scholar 

  53. Carey FA (2006) Organic chemistry, 6th edn. McGraw-HIll, New York

    Google Scholar 

  54. Rao HSP, Rafi S, Padmavathy K (2008) The Blaise reaction. Tetrahedron 64(35):8037–8043

    Google Scholar 

  55. Hlavinka ML, Hagadorn JR (2006) Structures of Zinc ketone enolates. Organometallics 25(14):3501–3507

    Google Scholar 

  56. Hlavinka ML, Hagadorn JR (2007) Zn(tmp)2: A versatile base for the selective functionalization of C−H bonds. Organometallics 26(17):4105–4108

    Google Scholar 

  57. Knochel P, Singer RD (1993) Preparation and reactions of polyfunctional organozinc reagents in organic synthesis. Chem Rev 93(6):2117–2188

    Google Scholar 

  58. Knochel P, Perea JJA, Jones P (1998) Organozinc mediated reactions. Tetrahedron 54(29):8275–8319

    Google Scholar 

  59. Fürstner A (1989) Recent advancements in the reformatsky reaction. Synthesis 1989(8):571–590

    Google Scholar 

  60. Hama T, Ge S, Hartwig JF (2013) Palladium-Catalyzed α‐Arylation of zinc enolates of esters: Reaction Conditions and Substrate Scope. J Org Chem 78(17):8250–8266

    Google Scholar 

  61. Hama T, Culkin DA, Hartwig JF (2006) Palladium-catalyzed intermolecular α-Arylation of zinc amide enolates under mild conditions. J Am Chem Soc 128(15):4976–4985

    Google Scholar 

  62. Hama T, Liu XX, Culkin DA, Hartwig JF (2003) Palladium-catalyzed α-Arylation of esters and amides under more neutral conditions. J Am Chem Soc 125(37):11176–11177

    Google Scholar 

  63. Fauvarque JF, Jutand A (1977) Arylation of the reformatsky reagent catalyzed by zerovalent complexes of palladium and nickel. J Organomet Chem 132(2):C17–C19

    Google Scholar 

  64. Fauvarque JF, Jutand A (1979) Catalysis of the arylation of the reformatsky reagent by palladium or nickel-complexes. Synthesis of Aryl Acid-Esters. J Organomet Chem 177(1):273–281

    Google Scholar 

  65. Cossy J, De Filippis A, Pardo DG (2003) Palladium-catalyzed intermolecular α-Arylation of N-Protected 2-Piperidinones. Org Lett 5(17):3037–3039

    Google Scholar 

  66. Bentz E, Moloney MG, Westaway SM (2004) Palladium-catalysed α-arylation of esters and amides under microwave conditions. Tetrahedron Lett 45(40):7395–7397

    Google Scholar 

  67. Duez S, Bernhardt S, Heppekausen J, Fleming FF, Knochel P (2011) Pd-Catalyzed α-Arylation of nitriles and esters and γ-Arylation of unsaturated nitriles with TMPZnCl·LiCl. Org Lett 13(7):1690–1693

    Google Scholar 

  68. Dekker J, Schouten A, Budzelaar PHM, Boersma J, Vanderkerk GJM, Spek AL, Duisenberg AJM (1987) Zinc enolates: C- or O-metallation? J Organomet Chem 320(1):1–12

    Google Scholar 

  69. Hansen MM, Bartlett PA, Heathcock CH (1987) Preparation and reactions of an alkylzinc enolate. Organometallics 6(10):2069–2074

    Google Scholar 

  70. Perez-Luna A, Botuha C, Ferreira F, Chemla F (2008) Carbometalation of unactivated alkenes by zinc enolate derivatives. New J Chem 32(4):594–606

    Google Scholar 

  71. Denes F, Perez-Luna A, Chemla F (2010) Addition of metal enolate derivatives to unactivated carbon-carbon multiple bonds. Chem Rev 110(4):2366–2447

    Google Scholar 

  72. Kinoshita N, Kawabata T, Tsubaki K, Bando M, Fuji K (2006) Use of zinc enolate, free from other metals, in enantioselective palladium-catalyzed allylic alkylation. Tetrahedron 62(8):1756–1763

    Google Scholar 

  73. Jarugumilli GK, Cook SP (2011) A simple, nontoxic iron system for the allylation of zinc enolates. Org Lett 13(8):1904-1907

    Google Scholar 

  74. Berman AM, Johnson JS (2004) Copper-catalyzed electrophilic amination of diorganozinc reagents. J Am Chem Soc 126(18):5680–5681

    Google Scholar 

  75. Berman AM, Johnson JS (2005) Copper-catalyzed electrophilic amination of functionalized diarylzinc reagents. J Org Chem 70(1):364–366

    Google Scholar 

  76. Berman AM, Johnson JS (2005) Nickel-catalyzed electrophilic amination of organozinc halides. Synlett 2005(11):1799–1801

    Google Scholar 

  77. Berman AM, Johnson JS (2006) Copper-catalyzed electrophilic amination of organozinc nucleophiles: documentation of O-Benzoyl Hydroxylamines as broadly useful R2N(+) and RHN(+) synthons. J Org Chem 71(1):219–224

    Google Scholar 

  78. Campbell MJ, Johnson JS (2007) Mechanistic studies of the Copper-catalyzed electrophilic amination of diorganozinc reagents and development of a Zinc-Free protocol. Org Lett 9(8):1521–1524

    Google Scholar 

  79. Matsuda N, Hirano K, Satoh T, Miura M (2012) Copper-catalyzed amination of Arylboronates with N,N-Dialkylhydroxylamines. Angew Chem Int Ed 51(15):3642–3645

    Google Scholar 

  80. Rucker RP, Whittaker AM, Dang H, Lalic G (2012) Synthesis of hindered anilines: copper-catalyzed electrophilic amination of aryl boronic esters. Angew Chem Int Ed 51(16):3953–3956

    Google Scholar 

  81. Rucker RP, Whittaker AM, Dang H, Lalic G (2012) Synthesis of tertiary alkyl amines from terminal alkenes: Copper-catalyzed amination of alkyl boranes. J Am Chem Soc 134(15):6571–6574

    Google Scholar 

  82. Xiao Q, Tian LM, Tan RC, Xia Y, Qiu D, Zhang Y, Wang JB (2012) Transition-Metal-Free electrophilic amination of arylboroxines. Org Lett 14(16):4230–4233

    Google Scholar 

  83. Sakae R, Hirano K, Satoh T, Miura M (2013) Formal anti-Markovnikov Hydroamination of terminal aryl alkynes with pinacolborane and hydroxylamines via Zr/Cu sequential catalysis. Chem Lett 42(10):1128–1130

    Google Scholar 

  84. Miki Y, Hirano K, Satoh T, Miura M (2013) Copper-catalyzed electrophilic amination of arylsilanes with hydroxylamines. Org Lett 15(1):172–175

    Google Scholar 

  85. Matsuda N, Hirano K, Satoh T, Miura M (2012) Copper-catalyzed amination of ketene silyl acetals with hydroxylamines: electrophilic amination approach to α-Amino acids. Angew Chem Int Ed 51(47):11827–11831

    Google Scholar 

  86. Nguyen MH, Smith AB (2013) Copper-catalyzed electrophilic amination of organolithiums mediated by recoverable siloxane transfer agents. Org Lett 15(18):4872–4875

    Google Scholar 

  87. Yan X, Chen C, Zhou Y, Xi C (2012) Copper-catalyzed Electrophilic amination of alkenylzirconocenes with O-Benzoylhydroxylamines: an efficient method for synthesis of enamines. Org Lett 14(18):4750–4753

    Google Scholar 

  88. Reformatsky S (1887) Neue synthese zweiatomiger einbasischer Säuren aus den Ketonen. Ber Dtsch Chem Ges 20(1):1210–1211

    Google Scholar 

  89. Reformatsky SJ (1890) Action of zinc and ethyl chloroacetate on ketones and aldehydes. Russ Phys Chem Soc 22:44–64

    Google Scholar 

  90. Greszler SN, Johnson JS (2009) Diastereoselective synthesis of pentasubstituted gamma-butyrolactones from silyl glyoxylates and ketones through a double Reformatsky reaction.. Angew Chem Int Ed 48(20):3689–3691

    Google Scholar 

  91. Noack M, Göttlich R (2002) Copper(I) Catalysed cyclisation of unsaturated N-Benzoyloxyamines: An Aminohydroxylation via radicals. Chem Commun 2002(5):536–537

    Google Scholar 

  92. Galliford CV, Scheidt CA (2008) An unusual dianion equivalent from acylsilanes for the synthesis of substituted β-Keto esters Chem Commun 2008(16):1926–1928

    Google Scholar 

  93. Medson C, Smallridge AJ, Trewhella MA (1997) The stereoselective preparation of β-hydroxy esters using a yeast reduction in an organic solvent. Tetrahedron: Asymmetry 8(7):1049–1054

    Google Scholar 

  94. tritzky AR, Wang Z, Wang M, Wilkerson CR, Hall CD, Akhmedov NG (2004) Preparation of β-Keto Esters and β-Diketones by C-Acylation/Deacetylation of Acetoacetic Esters and Acetonyl Ketones with 1-Acylbenzotriazoles. J Org Chem 69(20):6617–6622

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stacey L. McDonald .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

McDonald, S.L. (2016). Selective α-Amination and α-Acylation of Esters and Amides via Dual Reactivity of O-Acylhydroxylamines Toward Zinc Enolates. In: Copper-Catalyzed Electrophilic Amination of sp2 and sp3 C−H Bonds. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-38878-6_2

Download citation

Publish with us

Policies and ethics