Skip to main content

Uncertainty Quantification in Chromatography Process Identification Based on Markov Chain Monte Carlo

  • Chapter
  • First Online:
  • 633 Accesses

Abstract

Modeling and simulation of chromatography systems leads to better understanding of the mass transfer mechanisms and operational conditions that can be used to improve molecular separation/purification. In this chapter, parameter uncertainty produced by the model and measurement errors in a front velocity chromatography model is quantified by means of a Bayesian method, the delayed rejection adaptive metropolis algorithm, which is a variant of the Markov Chain Monte Carlo (MCMC) method. The model is also evaluated for a random sample of parameters, being then determined the uncertainty in the prediction.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Câmara, L.D.T.: Chromatographic columns characterization for SMB (Simulated Moving Bed) separation of glucose and fructose. In: 8th European Congress of Chemical Engineering- ECC (2011)

    Google Scholar 

  2. Chib, S., Greenberg, E.: Understanding the Metropolis-Hastings algorithm. Am. Stat. 49 (4), 327–335 (1995)

    Google Scholar 

  3. Cowles, M.K., Carlin, B.P.: Markov chain Monte Carlo convergence diagnostics: a comparative review. J. Am. Stat. Assoc. 91 (434), 883–904 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Gelman, A., Carlin, J., Stern, H., Rubin, D.: Bayesian Data Analysis, 2nd edn. Chapman and Hall, London (2004)

    MATH  Google Scholar 

  5. Gu, T., Tsai, G.J., Tsao, G.T.: Modeling of nonlinear multicomponent chromatography. In: Tsao, G.T. (ed.) Advances in Biochemical Engineering/Biotechnology, vol. 49, pp. 45–71. Springer, Berlin (1993)

    Google Scholar 

  6. Guiochon, G.: Preparative liquid chromatography. J. Chromatogr. A. 965 (1–2), 129–161 (2002)

    Article  Google Scholar 

  7. Haario, H., Saksman, E., Tamminen, J.: An adaptive metropolis algorithm. Bernoulli 7 (2), 223–242 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  8. Haario, H., Laine, M., Mira, A., Saksman, E.: DRAM: efficient adaptive MCMC. Stat. Comput. 16 (4), 339–354 (2006)

    Article  MathSciNet  Google Scholar 

  9. Laine, M.: MCMC Toolbox for Matlab. MathWorks (2007). http://helios.fmi.fi/~lainema/mcmc/

  10. Lee, K.B., Kasat, R., Cox, G., Wang, N.: Simulated moving bed multiobjective optimization using standing wave design and genetic algorithm. Am. Inst. Chem. Eng. J. 54 (11), 2852–2871 (2008)

    Article  Google Scholar 

  11. Nam, H.G., Mun, S.: Optimal design and experimental validation of a three-zone simulated moving bed process based on the Amberchrom-CG161C adsorbent for continuous removal of acetic acid from biomass hydrolyzate. Process Biochem. 47, 725–734 (2012)

    Article  Google Scholar 

  12. Nam, H.G., Park, C., Jo, S.H., Suh, Y.W., Mun, S.: Continuous separation of succinic acid and lactic acid by using a three-zone simulated moving bed process packed with Amberchrom-CG300C. Process Biochem. 47, 2418–2426 (2012)

    Article  Google Scholar 

  13. Orlande, H.R.B., Colaço, M.J., Naveira-Cotta, M.J., Guimãraes, C., Borges, V.L. (eds.): Método de Monte Carlo com Cadeia de Markov. Inverse Problems in Heat Transfer (in Portuguese), Notas em Matemática Aplicada, vol. 51, pp. 67–80. Sociedade Brasileira de Matemática Aplicada e Computacional (www.sbmac.org.br) - SBMAC (2011)

  14. Roberts, G.O., Rosenthal, J.S.: Optimal scaling for various Metropolis-Hastings algorithms. Stat. Sci. 16 (4), 351–367 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  15. Solonen, A.: Monte Carlo Methods in Parameter Estimation of Nonlinear Models. Master’s Thesis, Lappeenranta University of Technology (2006)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support provided by the Brazilian Agencies FAPERJ, Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro; CNPq, Conselho Nacional de Desenvolvimento Científico e Tecnológico and CAPES, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, as well as the Ministerio de Educación Superior de Cuba (MES/Cuba).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirtha Irizar Mesa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mesa, M.I., Tavares Câmara, L.D., Campos-Knupp, D., da Silva Neto, A.J. (2016). Uncertainty Quantification in Chromatography Process Identification Based on Markov Chain Monte Carlo. In: Silva Neto, A., Llanes Santiago, O., Silva, G. (eds) Mathematical Modeling and Computational Intelligence in Engineering Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-38869-4_6

Download citation

Publish with us

Policies and ethics