Skip to main content

An Indirect Kernel Optimization Approach to Fault Detection with KPCA

  • Chapter
  • First Online:
Mathematical Modeling and Computational Intelligence in Engineering Applications

Abstract

This chapter discusses a new indirect kernel optimization criterion for the adjustment of a fault detection process that is based on the dimension–reduction technique known as kernel principal component analysis. The kernel parameter optimization proposed here involves the computation of the false alarm rate and false detection rate indicators that are combined in a single indicator: the area under the ROC curve. This approach was tested on the Tennessee Eastman (TE) process, where a significant decrease in false and missing alarms was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Camps-Echevarría, L., Llanes-Santiago, O., Silva Neto, A.J., Campos-Velho, H.F.: An approach to fault diagnosis using meta-heuristics: a new variant of the differential evolution algorithm. Comput. Sist. 18 (1), 5–17 (2014)

    Google Scholar 

  2. Cheng, C., Hsu, C., Chen, M.: Adaptive kernel principal component analysis (KPCA) for monitoring small disturbances of nonlinear processes. Ind. Eng. Chem. Res. 49 (5), 2254–2262 (2010)

    Article  Google Scholar 

  3. Chiang, L., Braatz, R., Russell, E.: Fault detection and diagnosis in industrial systems. Springer, London (2001)

    Book  MATH  Google Scholar 

  4. Choi, S., Lee, C., Lee, J., Park, J., Lee, I.: Fault detection and identification of nonlinear processes based on kernel PCA. Chemom. Intell. Lab. Syst. 75 (1), 55–67 (2005)

    Article  Google Scholar 

  5. de Lázaro, J.B., Prieto-Moreno, A., Llanes-Santiago, O., Silva-Neto, A.J.: Optimizing kernel methods to reduce dimensionality in fault diagnosis of industrial systems. Comput. Ind. Eng. 87, 140–149 (2015)

    Article  Google Scholar 

  6. Downs, J., Vogel, E.: A plant-wide industrial process control problem. Chem. Eng. 17 (3), 245–255 (1993)

    Google Scholar 

  7. Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27 (8), 861–874 (2006)

    Article  MathSciNet  Google Scholar 

  8. Knupp, D., Sacco, W., Silva-Neto, A.: Direct and inverse analysis of diffusive logistic population evolution with time delay and impulsive culling via integral transforms and hybrid optimization. Appl. Math. Comput. 250, 105–120 (2015)

    MathSciNet  MATH  Google Scholar 

  9. Prieto-Moreno, A., Llanes-Santiago, O., de Lázaro, J.B., Garcia-Moreno, E.: Comparative evaluation of classification methods used in fault diagnosis of industrial processes. IEEE Lat. Am. Trans. 11 (2), 682–689 (2013)

    Article  Google Scholar 

  10. Prieto-Moreno, A., Llanes-Santiago, O., García-Moreno, E.: Principal components selection for dimensionality reduction using discriminant information applied to fault diagnosis. J. Process Control 33, 14–24 (2015)

    Article  Google Scholar 

  11. Qin, S.: Survey on data-driven industrial process monitoring and diagnosis. Ann. Rev. Control 36 (2), 220–234 (2012)

    Article  Google Scholar 

  12. Schölkopf, B., Smola, A., Müller, K.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10 (5), 1299–1319 (1998)

    Article  Google Scholar 

  13. Storn, R., Price, K.: Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces. J. Glob. Optim. 11 (4), 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Venkatasubramanian, V., Rengaswamy, R., Yin, K., Kavuri, S.: A review of process fault detection and diagnosis: Part I: Quantitative model based methods. Comput. Chem. Eng. 27 (3), 293–311 (2003)

    Article  Google Scholar 

  15. Yin, S., Ding, S., Haghani, A., Hao, H., Zhang, P.: A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process. J. Process Control 22 (9), 1567–1581 (2012)

    Article  Google Scholar 

  16. Zhang, Y.: Enhanced statistical analysis of nonlinear processes using KPCA, KICA and SVM. Chem. Eng. Sci. 64 (5), 801–811 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the financial support provided by the Brazilians Agencies FAPERJ, Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro; CNPq, Conselho Nacional de Desenvolvimento Científico e Tecnológico; CAPES, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, and MES/CUBA, Ministerio de Educación Superior de Cuba.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. Bernal de Lázaro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

de Lázaro, J.M.B., Llanes-Santiago, O., Prieto-Moreno, A., Campos Knupp, D. (2016). An Indirect Kernel Optimization Approach to Fault Detection with KPCA. In: Silva Neto, A., Llanes Santiago, O., Silva, G. (eds) Mathematical Modeling and Computational Intelligence in Engineering Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-38869-4_5

Download citation

Publish with us

Policies and ethics