Skip to main content

Abstract

This chapter focuses on a formulation for fault diagnosis (FDI) using an inverse problem methodology. It has been shown that this approach allows for diagnoses with adequate balance between robustness and sensitivity. The main contribution of this chapter is the expansion of this approach to include the diagnosis of time-dependent incipient faults. The FDI inverse problem is formulated as an optimization problem that is then solved with two metaheuristics: Differential Evolution and its variation Differential Evolution with Particle Collision. The proposed methodology is tested using simulated data from the Two Tanks system, which is recognized as benchmark for control and diagnosis. The results indicate that this proposal is suitable for the aforementioned diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brest, J., Greiner, S., Boscovic, B., Mernik, M., Zumer, V.: Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems. IEEE Trans. Evol. Comput. 10 (8), 646–657 (2006)

    Article  Google Scholar 

  2. Camps-Echevarría, L., Llanes-Santiago, O., Silva Neto, A.J.: Fault diagnosis based on inverse problem solution. In: 7th International Conference on Inverse Problems in Engineering (ICIPE). Florida (2011)

    Google Scholar 

  3. Camps-Echevarría, L., Llanes-Santiago, O., Silva Neto, A.J.: Aplicaciónn de los algoritmos evolución diferencial y colisión de partículas al diagnóstico de fallos en sistemas industriales. Revista Investig. Oper. 18 (1), 5–17 (2012)

    Google Scholar 

  4. Camps-Echevarría, L., Campos Velho, H.F., Becceneri, J.C., Silva Neto, A.J., Llanes-Santiago, O.: The fault diagnosis inverse problem with ant colony optimization and fuzzy- ant colony optimization. Appl. Math. Comput. 227 (15), 687–700 (2014)

    MathSciNet  Google Scholar 

  5. Camps-Echevarría, L., Llanes-Santiago, O., Silva Neto, A.J., Campos-Velho, H.F.: An approach to fault diagnosis using meta-heuristics: a new variant of the differential evolution algorithm. Comput. Sist. 18 (1), 5–17 (2014)

    Google Scholar 

  6. Das, S., Abraham, A., Uday, K.C., Konar, A.: Differential evolution using a neighborhood-based mutation operator. IEEE Trans. Evol. Comput. 13 (3), 526–553 (2009)

    Article  Google Scholar 

  7. Ding, S.X.: Model-based Fault Diagnosis Techniques: Design Schemes, Algorithms, and Tool. Springer, London (2008)

    Google Scholar 

  8. Dulmage, A., Mendelsohn, N.: Coverings of bipartite graphs. Can. J. Math 10 (5), 517–534 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  9. Frank, P.M.: Analytical and qualitative model-based fault diagnosis: a survey and some new results. Eur. J. Control 2 (1), 6–28 (1996)

    Article  MATH  Google Scholar 

  10. Isermann, R.: Model based fault detection and diagnosis. Status and applications. Ann. Rev. Control 29 (1), 71–85 (2005)

    Article  Google Scholar 

  11. Krysander, M., Frisk, E.: Sensor placement for fault diagnosis. IEEE Trans. Syst. Man Cybern. Part A Syst. Humans 38 (6), 1398–1410 (2008)

    Article  Google Scholar 

  12. Krysander, M., Aslund, J., Frisk, E.: An efficient algorithm for finding minimal overconstrained subsystems for model-based diagnosis. IEEE Trans. Syst. Man Cybern. Part A Syst. Humans 38 (1), 197–206 (2008)

    Article  Google Scholar 

  13. Liu, Q., Wenyuan, L.: The study of fault diagnosis based on particle swarm optimization algorithm. Comput. Inf. Sci. 2 (2), 87–91 (2009)

    Google Scholar 

  14. Lunze, J.: Laboratory three tanks system-benchmark for the reconfiguration problem. Technical Report, Technical University of Hamburg-Harburg, Institute of Control Engineering (1998)

    Google Scholar 

  15. Luz, E.F.P., Becceneri, J.C., Velho, H.F.C.: A new Multiparticle Collision Algorithm for optimization in a high-performance environment. J. Comput. Interdiscip. Sci. 1 (1), 3–10 (2008)

    Google Scholar 

  16. Metenidin, M.F., Witczak, M., Korbicz, J.: A novel genetic programming approach to nonlinear system modelling: application to the DAMADICS benchmark problem. Eng. Appl. Artif. Intell. 17 (4), 363–370 (2004)

    Article  Google Scholar 

  17. Mezura-Montes, E., Velázquez, J., Coello-Coello, C.A.: A comparative study of differential evolution variants for global optimization. In: The Genetic and Evolutionary Computation Conference (GECCO). Seattle, Washington (2006)

    Google Scholar 

  18. Qin, A.K., Huang, V.L., Suganthan, P.N.: Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans. Evol. Comput. 13 (2), 398–417 (2009)

    Article  Google Scholar 

  19. Sacco, W.F., Oliveira, C.R.: A new stochastic optimization algorithm based on particle collisions. In: ANS Annual Meeting. Transactions of the American Nuclear Society (2005)

    Google Scholar 

  20. Sacco, W.F., Oliveira, C.R., Pereira, C.M.N.: Two stochastic optimization algorithms applied to nuclear reactor core design. Prog. Nucl. Energy 48 (6), 525–539 (2006)

    Article  Google Scholar 

  21. Samanta, B., Nataraj, C.: Use of particle swarm optimization for machinery fault detection. Eng. Appl. Artif. Intell. 22 (2), 308–316 (2009)

    Article  Google Scholar 

  22. Silva Neto, A.J., Becceneri, J.C.: Técnicas de Inteligência Computacional Inspiradas na Natureza – Aplicação em Problemas Inversos e Transferência Radiativa, vol. 41, 2a Edição. Notas em Matemática Aplicada. SBMAC, So Carlos (2012) [e-ISBN 978-85-8215-002-3]

    Google Scholar 

  23. Simani, S., Patton, R.J.: Fault diagnosis of an industrial gas turbine prototype using a system-identification approach. Control Eng. Pract. 16 (7), 769–786 (2008)

    Article  Google Scholar 

  24. Simani, S., Fantuzzi, C., Patton, R.J.: Model-Based Fault Diagnosis in Dynamic Systems Using Identification Techniques. Springer, London (2002)

    Google Scholar 

  25. Storn, R., Price, K.: Differential evolution: A simple and efficient adaptive scheme for global optimization over continuous spaces. J. Glob. Optim. 11 (4), 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  26. Suganthan, P., Hansen, N., Liang, J.J., Deb, K., Chen, Y.P., Auger, A., Tiwari, S.: Problem definitions and evaluation criteria for the CEC 2005. Technical Report, Nanyang Technological University (2005); Special session on real parameter optimization

    Google Scholar 

  27. Torres, R.H., Mesa, M.I., Câmara, L.D.T., Silva Neto, A.J., Llanes-Santiago, O.: Application of genetic algorithms for parameter estimation in liquid chromatography. Revista Ingeniería Electrónica, Autom. Comun. 32 (3), 13–20 (2011)

    Google Scholar 

  28. Tvrdik, J.: Adaptation in differential evolution: a numerical comparison. Appl. Soft Comput. 9 (3), 1149–1155 (2009)

    Article  MathSciNet  Google Scholar 

  29. Venkatasubramanian, V., Rengaswamy, R., Yin, K., Kavuri, S.N.: A review of process fault detection and diagnosis part i: Quantitative model-based methods. Comput. Chem. Eng. 27 (3), 293–311 (2003)

    Article  Google Scholar 

  30. Wang, L., Niu, Q., Fei, M.: A novel quantum ant colony optimization algorithm and its application to fault diagnosis. Trans. Inst. Meas. Control. 30 (3/4), 313–329 (2008)

    Article  Google Scholar 

  31. Witczak, M.: Advances in model based fault diagnosis with evolutionary algorithms and neural networks. Int. J. Math. Comput. Sci. 16 (1), 85–99 (2006)

    MathSciNet  MATH  Google Scholar 

  32. Witczak, M.: Modeling and Estimation Strategies for Fault Diagnosis of Non-Linear Systems From Analytical to Soft Computing Approaches. Springer, London (2007)

    MATH  Google Scholar 

  33. Yang, E., Xian, H., Zhang, D.: A comparative study of genetic algorithm parameters for the inverse problem-based fault diagnosis of liquid rocket propulsion systems. Int. J. Autom. Comput. 4 (3), 255–261 (2007)

    Article  Google Scholar 

  34. Zaharie, D.: Influence of crossover on the behavior of Differential Evolution algorithms. Appl. Soft Comput. 9 (3), 1126–1138 (2009)

    Article  Google Scholar 

  35. Zhang, J.: Adaptive differential evolution with optional external archive. IEEE Trans. Evol. Comput. 13 (5), 945–958 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support provided by the Brazilian Agencies FAPERJ, Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro; CNPq, Conselho Nacional de Desenvolvimento Científico e Tecnológico; CAPES, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, as well as the Ministerio de Educación Superior de Cuba (MES).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orestes Llanes-Santiago .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Camps-Echevarrı́a, L., Llanes-Santiago, O., de Campos Velho, H.F., da Silva Neto, A.J. (2016). Diagnosing Time-Dependent Incipient Faults. In: Silva Neto, A., Llanes Santiago, O., Silva, G. (eds) Mathematical Modeling and Computational Intelligence in Engineering Applications. Springer, Cham. https://doi.org/10.1007/978-3-319-38869-4_4

Download citation

Publish with us

Policies and ethics