Skip to main content

Microsoft Excel Approach to Estimating Alternative Option Pricing Models

  • Chapter
  • First Online:
Essentials of Excel, Excel VBA, SAS and Minitab for Statistical and Financial Analyses
  • 6723 Accesses

Abstract

This chapter shows how Microsoft Excel can be used to estimate call and put options for (a) Black–Scholes model for individual stock, (b) Black–Scholes model for stock indices, and (c) Black–Scholes model for currencies. In addition, we are going to present how an Excel program can be used to estimate American Options. Section 26.2 presents an option pricing model for Individual Stocks, Sect. 26.3 presents an option pricing model for Stock Indices, Sect. 26.4 presents option pricing model for Currencies, Sect. 26.5 presents Bivariate Normal Distribution Approach to calculate American Call Options, Sect. 26.6 presents the Black’s approximation method to calculate American Call Options, Sect. 26.7 presents how to evaluate American Call option when dividend yield is known, and Sect. 26.8 summarizes this chapter. Appendix 26.1 defines the Bivariate Normal probability density function, and Appendix 26.2 presents the Excel program to calculate the American call option when dividend payments are known.

This chapter was written by Professor Cheng F. Lee and Dr. Ta-Peng Wu of Rutgers University.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Anderson TW (2003) An introduction to multivariate statistical analysis, 3rd edn. Wiley-Interscience, New York

    MATH  Google Scholar 

  • Barone-Adesi G, Whaley RE (1987) Efficient analytic approximation of American option values. J Financ 42:301–320

    Google Scholar 

  • Black F (1976) The pricing of commodity contracts. J Financ Econ 3:167–178

    Article  Google Scholar 

  • Cox JC, Ross SA (1976) The valuation of options for alternative stochastic processes. J Financ Econ 3:145–166

    Article  Google Scholar 

  • Cox J, Ross S, Rubinstein M (1979) Option pricing: a simplified approach. J Financ Econ 7:229–263

    Article  MATH  Google Scholar 

  • Johnson NL, Kotz S (1970) Distributions in statistics: continuous univariate distributions 2. Wiley, New York

    MATH  Google Scholar 

  • Johnson NL, Kotz S (1972) Distributions in statistics: continuous multivariate distributions. Wiley, New York

    MATH  Google Scholar 

  • Lee CF, Lee JC, Lee AC (2013) Statistics for business and financial economics. Springer, New York

    Google Scholar 

  • Rubinstein M (1976) The valuation of uncertain income streams and the pricing of options. Bell J Econ Manage Sci 7:407–425

    Article  MathSciNet  Google Scholar 

  • Stoll HR (1969) The relationship between put and call option prices. J Financ 24:801–824

    Article  Google Scholar 

  • Whaley RE (1981) On the valuation of American call options on stocks with known dividends. J Financ Econ 9:207–211

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendices

Appendix 26.1: Bivariate Normal Distribution

We have shown how the cumulative univariate normal density function can be used to evaluate a European call option in the previous sections of this chapter. If a common stock pays a discrete dividend during the option’s life, the American call option valuation equation requires the evaluation of a cumulative bivariate normal density function. While there are many available approximations for the cumulative bivariate normal distribution, the approximation provided here relies on Gaussian quadratures. The approach is straightforward and efficient, and its maximum absolute error is 0.00000055.

The probability that x ' is less than a and that y ' is less than b for the standardized cumulative bivariate normal distribution can be defined as

$$ P\left({X}^{\hbox{'}}<a,{Y}^{\hbox{'}}<b\right)=\frac{1}{2\pi \sqrt{1-{\rho}^2}}{\displaystyle {\int}_{-\infty}^a{\displaystyle {\int}_{-\infty}^b \exp \left[\frac{2{x}^{\hbox{'}2}-2\rho {x}^{\hbox{'}}{y}^{\hbox{'}}+{y}^{\hbox{'}2}}{2\left(1-{\rho}^2\right)}\right]}}d{x}^{\hbox{'}}d{y}^{\hbox{'}}, $$

where \( {x}^{\hbox{'}}=\frac{x-{\mu}_x}{\sigma_x} \), \( {y}^{\hbox{'}}=\frac{y-{\mu}_y}{\sigma_y} \), and p is the correlation between the random variable s x ' and y '.

The first step in the approximation of the bivariate normal probability N 2(a, b; ρ) is as follows:

$$ \phi \left(a,b;\rho \right)\approx .31830989\sqrt{1-{\rho}^2}{\displaystyle \sum_{i=1}^5{\displaystyle \sum_{j=1}^5{w}_i{w}_jf\left({x}_i^{\hbox{'}},{x}_j^{\hbox{'}}\right)}}, $$
(26.15)

where \( f\left({x}_i^{\hbox{'}},{x}_j^{\hbox{'}}\right)= \exp \left[{a}_1\left(2{x}_i^{\hbox{'}}-{a}_1\right)+{b}_1\left(2{x}_j^{\hbox{'}}-{b}_1\right)+2\rho \left({x}_i^{\hbox{'}}-{a}_1\right)\left({x}_j^{\hbox{'}}-{b}_1\right)\right] \).

The pairs of weights (w) and corresponding abscissa values (x′) are

i,j

w

x '

1

0.24840615

0.10024215

2

0.39233107

0.48281397

3

0.21141819

1.0609498

4

0.033246660

1.7797294

5

0.00082485334

2.6697604

(This portion is based upon Appendix 13.1 of Stoll H. R. and R. E Whaley. Futures and Options. Cincinnati, OH: South Western Publishing, 1993.)

and the coefficients a 1 and b 1 are computed using \( {a}_1=\frac{a}{\sqrt{2\left(1-{\rho}^2\right)}} \) and \( {b}_1=\frac{b}{\sqrt{2\left(1-{\rho}^2\right)}} \).

The second step in the approximation involves computing the product abρ; if \( ab\rho \le 0 \), compute the bivariate normal probability, N 2(a, b; ρ), using the following rules:

$$ \begin{array}{l}(1)\kern0.5em \mathrm{If}\kern0.5em \mathrm{a}\le 0,\kern0.5em \mathrm{b}\le 0,\kern0.5em \mathrm{a}\mathrm{nd}\kern0.5em \rho \le 0,\kern0.5em \mathrm{then}\kern0.5em {N}_2\left(a,b;\rho \right)=\phi \left(a,b;\rho \right);\\ {}(2)\kern0.5em \mathrm{If}\kern0.5em \mathrm{a}\le 0,\kern0.5em \mathrm{b}\ge 0,\kern0.5em \mathrm{a}\mathrm{nd}\kern0.5em \rho >0,\kern0.5em \mathrm{then}\kern0.5em {N}_2\left(a,b;\rho \right)={N}_1(a)-\phi \left(a,-b;-\rho \right);\\ {}(3)\kern0.5em \mathrm{If}\kern0.5em \mathrm{a}\ge 0,\kern0.5em \mathrm{b}\le 0,\kern0.5em \mathrm{a}\mathrm{nd}\kern0.5em \rho >0,\kern0.5em \mathrm{then}\kern0.5em {N}_2\left(a,b;\rho \right)={N}_1(b)-\phi \left(-a,b;-\rho \right);\end{array} $$
$$ (4)\kern0.5em \mathrm{If}\kern0.5em \mathrm{a}\ge 0,\kern0.5em \mathrm{b}\ge 0,\kern0.5em \mathrm{a}\mathrm{nd}\kern0.5em \rho \le 0,\kern0.5em \mathrm{then}\kern0.5em {N}_2\left(a,b;\rho \right)={N}_1(a)+{N}_1(b)-1+\phi \left(-a,-b;\rho \right). $$
(26.16)

If \( ab\rho >0 \), compute the bivariate normal probability, N 2(a, b; ρ), as

$$ {N}_2\left(a,b;\rho \right)={N}_2\left(a,0;{\rho}_{ab}\right)+{N}_2\left(b,0;{\rho}_{ab}\right)-\delta, $$
(26.17)

where the values of N 2(•) on the right-hand side are computed from the rules, for \( ab\rho \le 0 \)

\( {\rho}_{ab}=\frac{\left(\rho a-b\right)Sgn(a)}{\sqrt{a^2-2\rho ab+{b}^2}} \), \( {\rho}_{ba}=\frac{\left(\rho b-a\right)Sgn(b)}{\sqrt{a^2-2\rho ab+{b}^2}} \), \( \delta =\frac{1-Sgn(a)\times Sgn(b)}{4} \),

and

\( Sgn(x)=\left\{\begin{array}{l}1\begin{array}{cc}\hfill \hfill & \hfill \hfill \end{array}x\ge 0\\ {}\begin{array}{cc}\hfill -1\hfill & \hfill \hfill \end{array}x<0\end{array}\right. \),

N 1(d) is the cumulative univariate normal probability.

Appendix 26.2: Excel Program to Calculate the American Call Option When Dividend Payments Are Known

The following is a Microsoft Excel Program which can be used to calculate the price of an American Call Option using the Bivariate Normal Distribution method (Table 26.1):

Table 26.1 Microsoft Excel program for calculating the American call options

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lee, CF., Lee, J., Chang, JR., Tai, T. (2016). Microsoft Excel Approach to Estimating Alternative Option Pricing Models. In: Essentials of Excel, Excel VBA, SAS and Minitab for Statistical and Financial Analyses. Springer, Cham. https://doi.org/10.1007/978-3-319-38867-0_26

Download citation

Publish with us

Policies and ethics