Floods in Medieval Hungary: General Analysis, Comparisons and Conclusions

  • Andrea KissEmail author
Part of the Springer Water book series (SPWA)


Based on the case studies available in Chap.  5 and the evidence discussed in previous chapters, in this main chapter a complex overview and analysis of flood events are provided. The chapter is divided into three main sections. The first major section is concentrated on the physical–environmental aspects of reported floods of mainly or entirely natural origin: flood distribution, frequency and magnitude, origin of flood events, floods of main rivers, periods with highest flood frequencies, possible long-term consequences and hydromorphological changes and the weather-related information captured in flood events. The second main section specialised on human response on flood events both in its practical socio-economic consequences, responses and spiritual aspects is discussed. In the third part of the chapter, an analysis of the best-documented flood-rich periods and flood peaks, namely the late 1330s–1350s, late 1390s–early 1440s and late 1470s–1520s, is presented in more detail, in combination with related documentary and sedimentary evidence.


  1. Alexandre, Pierre. 1987. Le climat en Europe au Moyen Âge. Contribution à l’histoire des variations climatiques de 1000 à 1425, d’après les sources narratives de l’Europe occidentale, 540–581. Paris: Éditions de l’École des Hautes Études en Sciences Sociales.Google Scholar
  2. Andrásfalvy, Bertalan. 2007. A Duna mente népének ártéri gazdálkodása. Ártéri gazdálkodás Tolna és Baranya megyében az ármentesítési munkák befejezése előtt (Floodplain management of people along the Danube. Floodplain management in Tolna and Baranya country before the beginning of water regulation works). Budapest: Ekvilibrium.Google Scholar
  3. Baethgen, Friedrich. 1924. Monumenta Germaniae Historica. Scriptores rerum Germanicarum, 189, 195, 200–201, 203–207, 213, 215–216, 238. Nova series. Tomus 3: Chronica Iohannis Vitodurani. Berlin: Weidmann.Google Scholar
  4. Bak, János, Péter Banyó, and Martyn Rady (eds. and trans.). 2006. The customary law of the renowned Kingdom of Hungary: A work in three parts rendered by Stephen Werbőczy, vol. 5. The laws of the medieval Kingdom of Hungary. Budapest: CEU Press.Google Scholar
  5. Bánlaky, József. 1929. A magyar nemzet hadtörténelme (The military history of the Hungarian nation), vol. 4, 121. Budapest: Grill Károly.Google Scholar
  6. Bánlaky, József. 1932, 1933. A magyar nemzet hadtörténelme (Military history of the Hungarian nation) vol. 11–12, vol. 11: 49–232, vol. 12: 9–36. Budapest: Grill Karoly.Google Scholar
  7. Barriendos, Mariano, Denis Coeur, Michel Lang, Maria-Carmen Llasat, Robin Naulet, F. Lemaitre, and Antonio Barrera. 2003. Stationarity analysis of historical flood series in France and Spain (14th–20th centuries). Natural Hazards and Earth System Sciences 3: 583–592.CrossRefGoogle Scholar
  8. Barriendos, Mariano, and Fernando S. Rodrigo. 2006. Historical flood events in Spain. Hydrological Science Journal 51 (5): 765–783.CrossRefGoogle Scholar
  9. Barriendos, Mariano, and Javier Martín-Vide. 1998. Secular climate oscillations as indicated by catastrophic floods in the Spanish Mediterranean coastal area (14th–19th century). Climatic Change 38 (4): 473–498.CrossRefGoogle Scholar
  10. Bauch, Martin. 2017. The day the sun turned blue: A volcanic eruption in the early 1460s and its possible climatic impact—A natural disaster perceived globally in the late Middle Ages? In Historical disaster experiences. Transcultural research. Heidelberg studies on Asia and Europe in a global context, ed. Gerrit Schenk, 107–138. Heidelberg: Springer.Google Scholar
  11. Bellon, Tibor. 2004. Living together with nature. Farming on the river flats in the valley of the Tisza. Acta Ethnographica Hungarica 49 (3–4): 243–256.CrossRefGoogle Scholar
  12. Benito, Gerardo, Andrés Díez-Herrero, and María Fernández de Villata. 2003. Magnitude and frequency of flooding in the Tagus basin (Central Spain) over the last Millennium. Climatic Change 58: 171–192.Google Scholar
  13. Blöschl, Günter, Thomas Nester, Jürgen Komma, Juraj Parajka, and Rui A.P. Perdigão. 2013. The June 2013 flood in the Upiper Danube Basin, and comparisons with the 2002, 1954 and 1899 floods. Hydrology and Earth System Sciences 17: 5197–5212.CrossRefGoogle Scholar
  14. Bork, Hans-Rudolf, Helga Bork, Claus Dalchow, Berno Faust, Hans-Peter Piorr, and Thomas Schatz. 1998. Landschaftsentwicklung in Mitteleuropa. Wirkungen des Menschen auf die Landschaften, 328. Gotha: Klett-Perthes.Google Scholar
  15. Böhm, Oliver, Jucundus Jacobeit, Rüdiger Glaser, and Karl-Friedrich Wetzel. 2015. Flood sensitivity of the Bavarian Alpine Foreland since the late Middle Ages in the context of internal and external climate forcing factors. Hydrology and Earth System Sciences 19: 4721–4734.CrossRefGoogle Scholar
  16. Böhm, Oliver, and Karl-Friedrich Wetzel. 2006. Flood history of the Danube tributaries Lech and Isar in the Alpine foreland in Germany. Hydrological Science Journal 51: 784–798.CrossRefGoogle Scholar
  17. Börcsök, Zsófia. 2005. Fertő tó mederfelszínének, partváltozásának vizsgálata, egykori szigetek rekonstrukciója, beazonosítása (Analysis of basin surface and shoreline changes of Lake Fertő, identification and reconstruction of former islands). Unpublished B.Sc. thesis. Szeged: University of Szeged.Google Scholar
  18. Brázdil, Rudolf, Gaston Demarée, Matthias Deutsch, Emanuel Garnier, Andrea Kiss, Jürg Luterbacher, Neil MacDonald, Christian Rohr, Petr Dobrovolný, Petr Kolář, and Katerina Chromá. 2010. European floods of the winter 1783/84: Scenarios of a extreme event during the ‘Little Ice Age’. Theoretical and Applied Climatology 100 (1–2): 163–189.Google Scholar
  19. Brázdil, Rudolf, and Oldřich Kotyza. 1995. History of weather and climate in the Czech lands I (Period 1000–1500). Zürcher Geographische Schriften 62, Zürich, 114–143 p.Google Scholar
  20. Brázdil, Rudolf, Ladislava Řeznícková, Hubert Valášek, Lukáš Dolák, and Oldřich Kotyza. 2016. Climatic effects and impacts of the the 1815 erution of Mount Tambora in the Czech Lands. Climate of the Past 12: 1361–1374.CrossRefGoogle Scholar
  21. Brázdil, Rudolf, Oldřich Kotyza, and Petr Dobrovolný. 2006. July 1432 and August 2002—two millennial floods in Bohemia? Hydrological Sciences Journal 51 (5): 848–863.CrossRefGoogle Scholar
  22. Brázdil, Rudolf, Petr Dobrovolný, Libor Elleder, Vilibald Kakos, Oldřich Kotyza, Vít Květoň, Jarmila Macková, Miloslav Müller, Josef Štekl, Radim Tolasz, and Hubert Valášek. 2005. Historické a současné povodně v České Republice/Historical and recent floods in the Czech Republic, 331, 341, 351–354. Brno-Praha: Masaryk University—Czech Hydrometeorological Institute.Google Scholar
  23. Brázdil, Rudolf, Zbigniev W. Kundzewicz, Gerardo Benito, Gaston Demarée, Neil MacDonald, and Lars A. Roald. 2012. Historical floods in Europe in the past Millennium. In Changes in flood risk in Europe, vol. 10, ed. Zbigniev W. Kundzewicz, 121–166. IAHS special publication Wallingford: IAHS Press.CrossRefGoogle Scholar
  24. Camuffo, Dario, Giovanni Sturaro, and Gerardo Benito. 2003. An opposite flood pattern teleconnection between the Tagus (Iberian Peninsula) and Tiber (Italy) rivers during the last 1000 years. In Palaeofloods, historical floods and climatic variability: Applications in flood risk assessment, ed. Varyl R. Thorndycraft, Gerardo Benito, Mariano Barriendos, and Maria-Carmen Llasat, 295–300. Madrid: CSIC-CCM.Google Scholar
  25. Camuffo, Dario, and Silvia Enzi. 1996. The analysis of two bi-millennial series: Tiber and Po River floods. In Climate variations and forcing mechanisms of the last 2000 years, ed. Philip D. Jones, Raymond S. Bradley, and Jean Jouzel, 433–450. NATO ASI Series 141. Heidelberg: Springer.CrossRefGoogle Scholar
  26. Cole-Dai, Jihong, David G. Ferris, Alyson L. Lanciki, Joël Savarino, Mark H. Tiemens, and Joseph R. McConnell. 2012. Two likely stratospheric volcanic eruptions in the 1450s C.E. found in a bipolar, subannually dated 800 year ice core record. Journal of Geophysical Research: Atmospheres 118: 7459–7466.Google Scholar
  27. Cook, Edward R., Richard Seager, Yochanan Kushnir, Keith R. Briffa, Ulf Büntgen, David Frank, Paul J. Krusic, Willy Tegel, Geert J. van der Schrier, Laia Andreu-Hayles, Michael Baillie, Claudia Baittinger, Niels Bleicher, Niels Bonde, David M. Brown, Marco Carrer, Richard J. Cooper, Katarina Čufar, Christoph Dittmar, Jan Esper, Carol B. Griggs, Björn Gunnarson, Björn Günther, Emilia Gutiérrez, Kristof Haneca, Samuli Helama, Franz Herzig, Karl-Uwe Heussner, Jutta Hofmann, Pavel Janda, Raymond Kontic, Nesibe Köse, Tomáš Kyncl, Tom Levanič, Hans W. Linderholm, Sturt W. Manning, Thomas M. Melvin, Daniel Miles, Burkhard Neuwirth, Kurt Nicolussi, Paola Nola, Momchil Panayotov, Ionel Popa, Andreas Rothe, Kristina Seftigen, Andrea Seim, Helene Svarva, Miroslav Svoboda, Terje Thun, Mauri Timonen, Ramzi Touchan, Volodymyr Trotsiuk, Valerie Trouet, Felix Walder, Tomasz Ważny, Rob J.S. Wilson, and Christian Zang. 2015. Old World megadroughts and pluvials during the common era. Science Advances 1 (10): e1500561.Google Scholar
  28. Csepregi, Ildikó. 2017. Árpád-házi Szent Margit csodái (Miracles of the Arpadian Saint Margit). In Az első 300 év Magyarországon és Európában. A domonkos-rend a középkorban (The first 300 years in Hungary and Europe. The Dominican order in the middle ages), ed. József Csurgai Horváth, 103–124. Székesfehérvár: Alba Civitas Történeti Alapítvány.Google Scholar
  29. Deák, Viktória H.O.P. 2005. Árpád-házi Szent Margit és a domonkos hagiográfia (Saint Margaret from the House of Árpád and the Dominican hagiography), 500. Budapest: Kairosz Kiadó.Google Scholar
  30. Dotterweich, Markus. 2013. The history of human-induced soil erosion: Geomorphic legacies, early descriptions and research, and the development of soil conservation—A global synopsis. Geomorphology 201: 1–34.CrossRefGoogle Scholar
  31. Dotterweich, Markus, Milos Stankoviansky, Jozef Minár, Štefan Koco, and Pavol Papčo. 2013. Human induced soil erosion and gully system development in the Late Holocene and future perspectives on landscape evolution: The Myjava Hill Land, Slovakia. Geomorphology 201: 227–245.CrossRefGoogle Scholar
  32. Dóka, Klára. 1977–1978. A vízügyi igazgatás kezdetei 1772–1788 (The beginnings of water management directories 1772–1788). Levéltári Közlemények 48–49: 81–100.Google Scholar
  33. Draskóczy, István. 2008. Erdély sótermelése az 1530-as években (Salt production of Transylvania in the 1530s). Publicationes Universitatis Miskolciensis Sectio Philosophica 13 (3): 31–96.Google Scholar
  34. Dudar, Tibor (chief ed.). 1991. Történelmi világatlasz (Atlas of world history), 109. Budapest: Kartográfiai Vállalat.Google Scholar
  35. Erdélyi, József. 1840. Hydrotechnikai jegyzetek, és jelesen a’ folyóvizek’, és vidékjük’ földjének természetéről; kölcsönös hatásukbul keletkező eredményekről; így a’ folyamaknak jobb karba helyheztetését tárgyazó elvekről….. (Hydrotechnology notes, namely about waterflows and the nature of the land of their environments; the results of their interactions; and thus, about the theories of the improvements of rivers….), 81–82. Pozsony [Bratislava]: Weber S. Lajos.Google Scholar
  36. Esper, Jan, Lea Schneider, Apul J. Krusic, Jürg Luterbacher, Ulf Büntgen, Mauri Timonen, Frank Sirocko, and Eduardo Zorita. 2013. European summer temperature response to annually dated volcanic eruptions over the past nine centuries. Bulletin of Volcanology 75: 736.Google Scholar
  37. Ferenczi, László. 2008. Vízgazdálkodás a középkori Magyarországon (Water management in medieval Hungary). In Gazdaság és gazdálkodás a középkori Magyarországon: gazdaságtörténet, anyagi kultúra, régészet (Economy and husbandry in medieval Hungary: Economic history, material culture and archaeology), ed. András Kubinyi, József Laszlovszky, and Péter Szabó, 341–361. Budapest: Martin Opitz Kiadó.Google Scholar
  38. Fine, John V.A. 1994. The Late Medieval Balkans: A critical survey from the late twelfth century to the ottoman conquest, 575. Ann Arbor: The University of Michigen Press.Google Scholar
  39. Fógel, József, Béla Iványi, and László Juhász. 1936. Antonius de Bonfinis: Rerum Ungaricarum Decades, Vol. 3, 208, 214. Leipzig-Budapest: B. G. Teubner–Budapest K. M. Egyetemi Nyomda.Google Scholar
  40. Frisnyák, Sándor. 1999. Magyarország történeti földrajza (Historical geography of Hungary), 216. Budapest: Nemzeti Tankönyvkiadó.Google Scholar
  41. Fügedi, Erik. 1992. A középkori Magyarország történeti demográfiája (Historical demography of medieval Hungary). Történeti Demográfiai Füzetek 10: 7–60.Google Scholar
  42. Gao, Chaochao, Alan Robock, Stephen Self, Jeffrey B. Witter, Jørgen P. Steffenson, Henrik B. Clausen, Marie-Louise Siggaard-Andersen, Sigfus Johnsen, Paul A. Mayewski, and Caspar Amman. 2006. The 1452 or 1453 A.D. Kuwae eruption signal derived from multiple ice core records: Greatest volcanic sulfate event of the past 700 years. Journal of Geophysical Research 111: D12107.Google Scholar
  43. Gábris, Gyula, Ádám Kertész, and László Zámbó. 2003. Land use change and gully formation over the last 200 years in a hilly catchment. CATENA 50: 151–164.CrossRefGoogle Scholar
  44. Glaser, Rüdiger. 2013. Klimageschichte Mitteleuropas: 1200 Jahre Wetter, Klima. Katastrophen. Darmstadt: Primus Verlag 230–231: 227.Google Scholar
  45. Glaser, Rüdiger, and Heiko Stangl. 2003. Historical floods in the Dutch Rhine Delta. Natural Hazards and Earth System Sciences 3: 605–613.CrossRefGoogle Scholar
  46. Glaser, Rüdiger, and Heiko Stangl. 2004. Climate and floods in central Europe since AD 1000: Data, methods results and consequences. Survey in Geophysics 25: 485–510.CrossRefGoogle Scholar
  47. Grossmann, Karl (ed.). 1957. Jakob Unrest: Österreichische Chronik. In Monumenta Germaniae Historica, vol. 11, 27. Scriptores rerum Germanicarum. Nova series. Weimar: Hermann Böhlaus Nachfolger.Google Scholar
  48. Grygar, Tomas, Tereza Nováková, Martin Mihaljevič, Ladislav Strnad, Ivo Světlík, Leona Koptíková, Lenka Lisá, Rudolf Brázdil, Zděnek Máčka, Helena Svitavská-Svobodová, and David S. Wray. 2011. Suprisingly small increase of the sedimentation rate in the floodplain of Morava River in the last 1300 years. Catena 86: 192–207.CrossRefGoogle Scholar
  49. Guidoboni, Emanuela. 1998. Human factors, extreme events and floods in the Lower Po Plain (Northern Italy) in the 16th century. Environment and History 4: 279–308.CrossRefGoogle Scholar
  50. Hajósy, Ferenc. 1954. Adatok a Tisza vízgyűjtőjének csapadékviszonyaihoz (Data on the precipitation conditions of the Tisza catchment). Az Országos Meteorológiai Intézet Kisebb Kiadványai 29. Budapest: Akadémiai Kiadó.Google Scholar
  51. Herget, Jürgen, and Hendrik Meurs. 2010. Reconstructing peak discharges for historic flood levels in the city of Cologne, Germany. Global and Planetary Change 70: 108–116.CrossRefGoogle Scholar
  52. Herget, Jürgen, Thomas Roggenkamp, and Maria Krell. 2014. Estimation of peak discharges of historical floods. Hydrology and Earth System Sciences 18 (10): 4029–4037.CrossRefGoogle Scholar
  53. HNA (Hungarian National Archives), Collection of Medieval Documents (DL, DF): 1358: DL 61198, 1445: DL 13859, 1447: DL 30185, 1495: DL 69527, 1503: DF 240970.Google Scholar
  54. Inalcik, Halil. 1994. The Ottoman Empire. The Classic Age 1300–1600, 27–31. London: Phoenix.Google Scholar
  55. Kaján, Imre. 2001. Az Árpád-kor vízügyi rendszere (Hydrological system of the Arpadian period). Élet és Tudomány 56 (18): 554–556.Google Scholar
  56. Kardos, Tibor (ed.). 1972. Janus Pannonius versei (Poems of Janus Pannonius), 72. Budapest: Szépirodalmi Könyvkiadó.Google Scholar
  57. Kardos, Tibor. 1975. Janus Pannonius hivatástudata és költészete (Profession and poetry of Janus Pannonius). In Janus Pannonius, ed. Tibor Kardos and Sándor V. Kovács, 11–64. Budapest: Akadémiai Kiadó.Google Scholar
  58. Kiss, Andrea. 2000. Weather events during the first tatar invasion in Hungary (1241–42). Acta Geographica Universitatis Szegediensis 37: 149–156.Google Scholar
  59. Kiss, Andrea. 2001. Hydrology and environment in the southern basin of Lake Fertő/Neusiedl in the late Middle Ages. Medium Aevum Quotidianum 44: 61–77.Google Scholar
  60. Kiss, Andrea. 2003. “Ecce, in hyemis nivis et glaciei habundantia supervenit”—Időjárás, környezeti krízis és a tatárjárás (Weather, environmental crisis and the Mongol invasion). In Tatárjárás (Mongol invasion), ed. Balázs Nagy, 439–452. Budapest: Osiris.Google Scholar
  61. Kiss, Andrea. 2007. “Suburbia autem maxima in parte videntur esse deleta”—Danube ice floods and the pitfalls of urban planning: Pest and its suburbs in 1768–1799. In From villages to cyberspace, ed. Csaba Kovács, 271–282. Szeged: University Press.Google Scholar
  62. Kiss, Andrea. 2009a. “Rivulus namque, qui dicitur Fuk, fluens de prefatu lacu”—Fok, Sár, Foksár (The late medieval Fok, Sár, Foksár River at Lake Balaton). In Antropogén ökológiai változások a Kárpát-medencében (Historical ecological changes of anthropogenic origin in the Carpathian Basin), ed. Andrásfalvy, Bertalan and Gábor Vargyas, 49–63. Budapest: PTE Néprajz–Kulturális Antropológia Tanszék–L’Harmattan.Google Scholar
  63. Kiss, Andrea. 2009b. Floods and weather in 1342 and 1343 in the Carpathian Basin. Journal of Environmental Geography 2 (3–4): 37–47.Google Scholar
  64. Kiss, Andrea. 2011. Árvizek és magas vízszintek a 13–15. századi Magyarországon az egykorú írott források tükrében: Megfoghatók-e és mi alapján foghatók meg rövid, közép és hosszú távú változások? In Környezettörténet (Environmental history), ed. Miklós Kázmér, 203–214. Budapest: Hantken Kiadó.Google Scholar
  65. Kiss, Andrea. 2012. Időjárás, környezeti problémák és az 1340-es évek elejének tatár hadjáratai (Weather, environmental problems and the Tatar military campaigns in the early 1340s). Hadtörténelmi Közlemények 125 (2): 483–506.Google Scholar
  66. Kiss, Andrea. 2014. Weather and weather-related natural hazards in Medieval Hungary II: Documentary evidence on the 13th century. Medium Aevum Quotidianum 68: 5–46.Google Scholar
  67. Kiss, Andrea. 2015. Before and after Tambora: Extreme floods in the mid-1810s in Hungary. Geophysical Research Abstracts 17: EGU2015-13869.Google Scholar
  68. Kiss, Andrea. 2017. Droughts and low water levels in late medieval Hungary II: 1361, 1439, 1443-4, 1455, 1473, 1480, 1482(?) 1502-3, 1506: documentary versus tree-ring (OWDA) evidence. Journal of Environmental Geography 10 (3–4): 43–56.CrossRefGoogle Scholar
  69. Kiss, Andrea, and Ferenc Piti. 2005. A fertői fok (The ‘fok’ of the Fertő). Soproni Szemle 59 (2): 164–184.Google Scholar
  70. Kiss, Andrea, Ferenc Piti, and Ferenc Sebők. 2016. 14. századi rossz termések, élelmiszerhiány, drágaság, (éh)ínség—és feltételezhető okaik Magyarországon (Bad harvests, food shortage, dearth, famine and their probable causes in 14th-century Hungary). Magyar Gazdaságtörténeti Évkönyv 2016: 23–79.Google Scholar
  71. Kiss, Andrea, and Ildikó Csernus-Molnár. 2008. Időjárási viszonyokhoz kapcsolható szélsőségek területi vonatkozásai a Temesi Bánságban: 1780–1800 (Areal consequences of weather-related extremes in the Temesi Bánság/Banat area: 1780–1800). In A táj változásai a Kárpát-medencében. Az erdélyi táj változásai (Landscape changes in the Carpathian Basin. Changes of the Transylvanian landscape), ed. György Füleky, 101–106. Gödöllő: Szent István Egyetem.Google Scholar
  72. Kiss, Andrea, and József Laszlovszky. 2013a. 14th–16th-century Danube floods and long-term water-level changes in archaeological and sedimentary evidence in the western and central Carpathian Basin: An overview with documentary comparison. Journal of Environmental Geography 6 (3-4): 1–11.CrossRefGoogle Scholar
  73. Kiss, Andrea, and József Laszlovszky. 2013b. Árvízhullámok a Dunán? A Duna árvizei és a visegrádi ferences kolostor a késő középkorban és kora újkorban (Flood waves on the Danube? Danube floods and the Franciscan monastery of Visegrád in the late medieval and early modern period). Korall 53: 36–65.Google Scholar
  74. Kiss, Andrea, Zoltán Sümeghy, and György Danku. 2006. Az 1783–1784. évi szélsőséges tél és a Maros jeges árvize (Severe winter of 1783–1784 and the ice flood on the Maros river). In Táj, környezet és társadalom/ Landscape, Environment and Society, ed. Andrea Kiss, Gábor Mezősi, and Zoltán Sümeghy, 353–362. Szeged: SzTE.Google Scholar
  75. Kiss, Andrea, and Zrinka Nikolić. 2015. Droughts, dry spells and low water levels in medieval Hungary (and Croatia) I. The great droughts of 1362, 1474, 1479, 1494 and 1507. Journal of Environmental Geography 8/1–2: 11–22.CrossRefGoogle Scholar
  76. Klaniczay, Gábor. 2013. Efforts at the canonization of Margaret of Hungary in the Angevin Period. Hungarian Historical Review 2 (2): 313–340.Google Scholar
  77. Klemetti, Erik. 2012. Kuwae eruption of the 1450s: Missig or mythical caldera? WIRED. Last download: 03.04.2018.
  78. Konecsny, Károly. 1999. Water developments and their impact on runoff in the Upper Tisa catchment. In The Upper Tisa Valley, 309–338. Tiscia monograph series. Szeged: Tisza Club&Liga Pro Europa.Google Scholar
  79. Kovács, I. Péter, Szabolcs Á. Fábián, Bertalan Radvánszky, and Gábor Varga. 2015. Dunaszekcső castle hill: Landslides along the Danube Loess Bluff. In Landscapes and landforms in Hungary, ed. Dénes Lóczy, 113–120. Berlin–Heidelberg: Springer.Google Scholar
  80. Kupelwieser, Leopold. 1899. Die Kämpfe Ungarns mit den Osmanen bis zur Schlacht bei Mohács, 1526, 155. Wien–Leipzig: Wilhelm Braumüller.Google Scholar
  81. Llasat, Maria-Carmen, Mariano Barriendos, Antonio Barrera, and Torneu Rigo. 2005. Floods in Catalonia (NE Spain) since the 14th century. Climatological and meteorological aspects from historical documentary sources and old instrumental records. Journal of Hydrology 313: 32–47.CrossRefGoogle Scholar
  82. Luterbacher, Jürg, and Christian Pfister. 2015. The year without a summer. Nature Geoscience 8: 246–248.CrossRefGoogle Scholar
  83. Machado, Maria J., Blanca A. Botero, J. López, Félix Francés, Andres Díez-Herrero, and Gerardo Benito. 2015. Flood frequency analysis of historical flood data under stationary and non-stationary modelling. Hydrology and Earth System Sciences 12: 525–568.CrossRefGoogle Scholar
  84. Majerčáková, Olga, Michal Make, Pavel Štastný, Milan Kupčo, and Peter Rončák. 2004. Selected flash floods in the Slovak Republic, 2–20. Global Water Partnership – Szlovakia. Report. Manuscript. Bratislava.Google Scholar
  85. Maksay, Ferenc. 1971. A magyar falu középkori településrendje (The medieval settling order of the Hungarian village), 81. Budapest: Akadémiai Kiadó.Google Scholar
  86. Márkus, Dezső (ed.). 1899. Corpus Juris Hungarici/Magyar törvénytár 1000–1895, 314–325. Budapest: Franklin Tarsulat.Google Scholar
  87. Méri, István. 1962. Az árkok szerepe Árpád-kori falvainkban (The role of ditches in the Arpadian Period villages). Archaeológiai Értesítő 89: 211–218.Google Scholar
  88. Mészáros, Orsolya, and Gábor Serlegi. 2011. The impact of environmental change on medieval settlement structure in Transdanubia. Acta Archaeologia Academiae Scientiarum Hungariae 62: 199–219.CrossRefGoogle Scholar
  89. Miklanek, Pavol, Pavla Pekarova, Dana Halmova, and Ales Svoboda. 2015. Forest influence on flash floods in small streams. PIASH 366: 139–140.CrossRefGoogle Scholar
  90. Mudelsee, Manfred. 2010. Climate time series analysis. Classical statistical and Bootstrap Methods. Dordrecht: Springer.Google Scholar
  91. Mudelsee, Manfred, Matthias Deutsch, Michael Börngen, and Gerd Tetzlaff. 2006. Trends in flood risk of the River Werra (Germany) over the past 500 years. Hydrological Science Journal 51 (5): 818–833.CrossRefGoogle Scholar
  92. Mudelsee, Manfred, Michael Börngen, Gerd Tetzlaff, and Uwe Grünewald. 2003. No upward trends in the occurrence of extreme floods in central Europe. Nature 425: 166–169.CrossRefGoogle Scholar
  93. Németh, Károly, Shane J. Cronin, and James D.L. White. 2007. Kuwae Caldera and climate confusion. The Open Geology Journal 1: 7–11.CrossRefGoogle Scholar
  94. Ortvay, Tivadar. 1898, 1900. Pozsony város története (History of Pozsony town), vol. 2/2, 399–408; vol. 2/3, 187–188. Pozsony [Bratislava]: Stampfel Károly.Google Scholar
  95. Pang, Kevin D. 1993. Climatic impact of the mid-fifteenth century Kuwae caldera eruption, as reconstructed from historical and proxy data. Eos 74: 106.Google Scholar
  96. Paulinyi, Oszkár. 1972. Nemesfémtermelésünk és országos gazdaságunk általános alakulása a bontakozó és a kifejlett feudalizmus korszakában 1000–1526 (Our precious metal production and the general development of country economy in the period of the emerging and developed feudalism). Századok 106 (3): 561–608Google Scholar
  97. Pesty, Frigyes. 1867. Magyarország vízhálózata a régi korban (Water network of Hungary in the old times). Századok 1 (1): 68–78.Google Scholar
  98. Pécsi, Márton. 1971. Az 1970. évi dunaföldvári földcsuszamlás (The Dunaföldvár loess-fall event in 1970). Földrajzi Értesítő 20 (3): 233–238.Google Scholar
  99. Pécsi, Márton. 1991. Geomorfológia és domborzatminősítés, 171. Budapest: MTA Földrajztudományi Intézet.Google Scholar
  100. Pišút, Péter, and Gábor Tímár. 2009. A csallóközi Duna-szakasz folyódinamikai változásai a középkortól napjainkig (Changes of the dynamics of the Danube River in Žitný ostrov, Slovakia). In Környezettörténet. Az elmúlt 500 év környezeti eseményei történeti és természettudományi források tükrében (Environmental history. Events of the last 500 years in light of historical and natural scientific evidence), ed. Miklós Kázmér, 55–70. Budapest: Hantken Kiadó.Google Scholar
  101. Plummer, Christopher T., Mark A.J. Curran, Tas D. van Ommen, Sune O. Rasmussen, Andrew D. Moy, Tessa R. Vance, Henrik B. Clausen, Bo M. Vinther, and Paul A. Mayewski. 2012. An independently dated 2000-yr volcanic record from Law Dome, East Antarctica, including a new perspective on the dating of the 1450s CE eruption of Kuwae, Vanuatu. Climate of the Past 8: 1929–1940.CrossRefGoogle Scholar
  102. Polla, Belo. 1979. Bratislava – západné suburbium (Bratislava – the western suburb). Fontes Archeologického ústavu SNM v Bratislave, 109. Bratislava: SNM.Google Scholar
  103. R. Várkonyi, Ágnes. 2009. “A természet majd az értelemmel….” Történeti ökológia és a XVIII. századi Magyarország környezeti válsága (“Then nature with the help of reason…” Historical ecology and the environmental crisis in the 18th-century Hungary). In Környezettörténet. Az elmúlt 500 év környezeti eseményei történeti és természettudományi források tükrében (Environmental history. Events of the last 500 years in the light of the historical and natural scientific evidence), ed. Miklós Kázmér, 21–54. Budapest: Hantken Kiadó.Google Scholar
  104. Raible, Christoph C., Stefan Brönnimann, Renate Auchmann, Philip Brohan, Thomas L. Fröhlicher, Hans-F. Graf, Phil Jones, Jürg Luterbacher, Stefan Muthers, Raphael Neukom, Alan Robock, Stephen Self, Adjat Sudrajat, Claudia Timmreck, and Martin Wegmann. 2016. Tambora 1815 as a test case for high impact volcanic eruptions: Earth system effects. WIREs Climate Change 7: 569–589.Google Scholar
  105. Retsö, Dag. 2015. Documentary evidence of historical floods and extreme rainfall events in Sweden 1400–1800. Hydrology Earth System Sciences 19: 1307–1323.Google Scholar
  106. Reumont, Alfred, and Robert Harrison. 1876. Lorenzo De’ Medici, the Magnificent, vol. 2, 174. London: Smith Elder and Co.Google Scholar
  107. Rihmer, Aurél. 2011. Vándorló falvak – a víz által átköltözésre ítélt települések az újkorban (Wandering villages – settlements forced to resettle by water in the modern period). In Környezettörténet 2 (Environmental history 2), ed. Miklós Kázmér, 143–156. Budapest: Hantken Kiadó.Google Scholar
  108. Rohr, Christian. 2007. Extreme Naturereignisse im Ostalpenraum. Naturerfahrung im Spätmittelalter und am Beginn der Neuzeit, 226–227, 273–274, 278–279, 284–285, 364, 322, 353–398, 554–555. Köln–Weimar–Wien: Böhlau Verlag.Google Scholar
  109. Schmocker-Fackel, Petra, and Felix Naef. 2010. Changes in flood frequencies in Switzerland since 1500. Hydrology and Earth System Sciences 14: 1581–1594.CrossRefGoogle Scholar
  110. Serlegi, Gábor. 2014. A Balaton vízszintváltozásának tendenciái a régészeti korokban (Water-level change tendencies of Lake Balaton in different archaeological periods). Unpublished PhD dissertation. Szeged: University of Szeged.Google Scholar
  111. Siebert, Lee, Tom Simkin, and Paul Kimberly. 2010. Volcanoes of the world, 3rd ed. Washington–Los Angeles-London: Smithsonian Institution–University of California Press.Google Scholar
  112. Sigl, Michael, Mai Winstrup, Joseph R. McConnell, Kees C. Welten, Gill Plunkett, Francis Ludlow, Ulf Büntgen, Marc W. Caffee, Nathan Chellman, Dorthe Dahl-Jensen, Hubertus Fischer, Sepp Kipfdtuhl, Conor Kostick, Olivia J. Maselli, Florian Mekhaldi, Robert Mulvaney, Raimund Muscheler, Daniel R. Pasteris, Jonathan R. Pilcher, Matthew Salzer, Simon Schüpbach, Jørgen P. Steffensen, Bo M. Vinther, and Thomas E. Woodruff. 2015. Timing and climate forcing of volcanic eruptions for the past 2,500 years. Nature 523: 543–549.CrossRefGoogle Scholar
  113. Siklósy, Zoltán, Attila Demény, István Szenthe, Szabolcs Leél-Őssy, Sebastian Pilet, Yin Lin, and Shen Chuan-Chou. 2009. Reconstruction of climate variation for the last millennium in the Bükk Mountains, northeast Hungary, from a stalagmite record. Időjárás 113(4): 245–263.Google Scholar
  114. Stankoviansky, Miloš. 2003. Gully evolution in Myjava Hill Land in the second half of the last millennium. Geographia Polonica 76: 89–107.Google Scholar
  115. Stankoviansky, Miloš, and Peter Pišút. 2011. Geomorphic response to the Little Ice Age in Slovakia. Geographica Polonica 84: 127–146.Google Scholar
  116. Sturm, Katrin, Rüdiger Glaser, Jucundus Jacobeit, Matthias Deutsch, Rudolf Brázdil, and Christian Pfister. 2001. Floods in Central Europe since AD 1500 and their relation to the atmospheric circulation. Petermanns Geographische Mitteilungen 148 (6): 18–27.Google Scholar
  117. Szabó, István. 1969. A középkori magyar falu (The medieval Hungarian village). Budapest: Akadémiai kiadó.Google Scholar
  118. Szalontai, Csaba. 2014. A Maty-ér és a kapcsolódó vízrendszer szerepe és jelentősége Szeged környékének településtörténetében (The role of the Maty-brook and the related water system in the settlement history of the Szeged area). Szeged: University of Szeged. Unpublished PhD dissertation.Google Scholar
  119. Szalontai, Csaba. 2016. Flood risk in Szeged before river engineering works: A historical reconstruction. Journal of Environmental Geography 9/3–4: 1–12.CrossRefGoogle Scholar
  120. Szalontai, Csaba, and Pál Sümegi. 2014. A Maty-ér és a kapcsolódó vízrendszer szerepe és jelentősége Szeged környékének településtörténetében (The role of the Maty-brook and the related water system in the settlement history of the Szeged area). In Geoszférák (Geospheres), ed. János Unger and Elemér P. Molnár, 179–204. Szeged: SZTE-TTK.Google Scholar
  121. Szentmártoni Szabó, Géza. 2007. Janus Pannonius szülőhelyéről (About the birthplace of Janus Pannonius). In “Nem süllyed az emberiség. …” (“Mankind is not sinking. ….”), ed. József Jankovics (ed. in chief), 225–235. Budapest: MTA Irodalomtudományi Intézet.Google Scholar
  122. Szilassi, Péter, Győző Jordán, Anton van Rompaey, and Gábor Csillag. 2006. Impacts of historical land use changes on erosion and agricultural soil properties in the Káli Basin at Lake Balaton, Hungary. CATENA 68: 96–108.Google Scholar
  123. Szőcs, Tibor. 2010. Egy “második tatárjárás”? A tatár-magyar kapcsolatok a XIII. század második felében (A “second Tatar invasion”? Tatar-Hungarian relationship in the second half of the 13th century). Belvedere Meridionale 22 (3-4): 16–49.Google Scholar
  124. Takács, Károly. 2000. Árpád-kori csatornarendszerek kutatása a Rábaközben és a Kárpát-medence egyéb területein (Research on Arpadian-period canal systems in the Rábaköz area and in other parts of the Carpathian Basin). Korall 3: 53–59.Google Scholar
  125. Takács, Károly. 2001. Árpád-kori csatornarendszerek kutatásának eredményei (The results of the investigation of canal systems in the Arpadian period). Vízügyi Közlemények 83: 266–285.Google Scholar
  126. Takács, Károly. 2003. Medieval hydraulic systems in Hungary: Written sources, archaeology and interpretation. In People and nature in historical perspective, ed. József Laszlovszky and Péter Szabó, 289–312. Archaeolingua: Budapest.Google Scholar
  127. Takács, Károly, and György Füleky. 2003. Remains of the medieval canal systems in the Carpathian Basin. In Soils and archaeology, ed. Görgy Füleky, 65–77. Oxford: Archaeopress, BAR International Series 1163.Google Scholar
  128. Takács, Károly, and Imre Kaján. 2001. Vízgazdálkodás, árvízvédelem – Az Árpád-kor vizügyi rendszere (Water management, flood protection – The hydrological system of the Arpadian period). Élet és Tudomány 56 (43): 1350–1352.Google Scholar
  129. Takács, Miklós. 2017. The archaeological investigation of settlements of the 7th–13th C. AD in Hungary in the last three decades. In Srednjovjekovna naselja u svijetlu arheoloških izvora (Mediaeval settlements in the light of archaeological sources), ed. Tajana Sekelj-Ivančan, Tatjana Tkalčec, Siniša Krznar, and Juraj Belaj, 5–14. Serta Instituti Archaeologici 6. Zagreb: Institut za arheologiju.Google Scholar
  130. Takáts, Sándor. 1900. A dunai hajózás a XVI. és XVII. században I-II (Danube shipping in the 16th and 17th centuries. First and second parts). Magyar Gazdaságtörténelmi Szemle 7 (3–4): 97–122, 145–176.Google Scholar
  131. Tardy, Lajos. 1980. A tatár rabszolgakereskedelem és a magyarok a XIII-XV. században (The Tatar slave trade and the Hungarians in the 13th–15th centuries). Budapest: Akadémiai Kiadó.Google Scholar
  132. Teke, Zsuzsa. 2010. Mátyás és kora. Kronológia, 1458–1490 (Matthias and his time. Chronology: 1458–1490). História 30 (10): 5–24.Google Scholar
  133. Telelis, Ioannis G. 2008. Climatic fluctuations in the Eastern Mediterranean and the Middle East AD 300-1500 from Byzantine documentary and proxy physical paleoclimatic evidence—A comparison? Jahrbuch der Österreichischen Byzantinistik 58: 167–207.CrossRefGoogle Scholar
  134. Thuróczy, János/De Thurocz, Johannes. 1488. Chronica Hungarorum. Augsburg: Theobald Feger-Erhard Ratdolt. OSzK, Manuscript Collection, Inc. 1143, 282. Online available: Last download: 02.03.2018.
  135. Thúry, József. 1893. Szulejmán naplói (Suleiman’s diaries). In Török történetírók (Turkish history writers), vol. 2, ed. József Thúry, 87–115. Budapest: Akadémiai Kiadó.Google Scholar
  136. Tóth, István. 1965. Jannus Pannonius származása (The ancestry of Janus Pannonius). Irodalomtörténeti közlemények 69 (5): 603–613.Google Scholar
  137. Tringli, István. 2001. A magyar szokásjog a malomépítésről (The Hungarian customary low of mill-building). In Tanulmányok a középkorról (Studies about the Middle Ages), ed. Tibor Neumann, 251–267. Analecta Medievalia 1. Budapest: Argumentum Kiadó–Pázmány Péter Katolikus Egyetem.Google Scholar
  138. Urminský, Jozef. 2005. A középkori Somorja a régészeti leletek tükrében (The medieval Somorja in the light of archaeological findings). In Fejezetek Somorja város történetéből (Chapters from the history of Somorja town), ed. Gábor Strešňák and László Végh, 9–19. Disputationes Samarienses 4. Somorja-Dunaszerdahely [Šamorín-Dunajská Stredá]: Fórum Kisebbségkutató Intézet.Google Scholar
  139. Újváry, Gábor, Gyula Mentes, László Bányai, János Kraft, Attila Gyimóthy, and János Kovács. 2009. Evolution of a bank failure along the River Danube at Dunaszekcső, Hungary. Geomorphology 109: 197–209.Google Scholar
  140. Vajda, Tamás. 2001. Adatok a Dráva menti középkori fokgazdálkodásról (Data about the medieval fok management along the Drava river). In Tanulmányok a középkorról (Studies about the Middle Ages), ed. Boglárka Weisz, László Balogh, and József Szarka, 125–137. Szeged: Középkorász Műhely.Google Scholar
  141. Vajda, Tamás. 2012a. Árpád- és Anjou-kori vízimalmaink tájalakító hatása (Water mills as driving forces of landscape change in the Arpadian and Angevin Period). In Micae Mediaevales II, ed. Bence Péterfi, András Vadas, Gábor Mikó, and Péter Jakab, 59–76. Budapest: ELTE BTK.Google Scholar
  142. Vajda, Tamás. 2012b. 1326 és 1344 közötti okleveles adatok a hazai vizimalmainkról (Charter data regarding domestic watermills in the period 1326–1344). In Középkortörténeti Tanulmányok 7 (Studies in medieval history 7), ed. Attila P. Kiss, Ferenc Piti, and György Szabados, 375–407. Szeged: Középkorász Műhely.Google Scholar
  143. Vajda, Tamás. 2015. Vízimalmok építésével előidézett, mesterséges áradások a középkori Magyarországon (Artificial floods caused by mills in medieval Hungary). In Középkortörténeti Tanulmányok 8 (Studies in medieval history 8), ed. Márta Tóber and Ágnes Maléth, 347–362. Szeged: Középkorász Műhely.Google Scholar
  144. Wetter, Oliver, Christian Pfister, Rolf Weingartner, Jürg Luterbacher, Tom Reist, and Jürg Trösch. 2011. The largest floods in the High Rhine basin since 1268 assessed from documentary and instrumental evidence. Hydrological Sciences Journal 56 (5): 733–758.CrossRefGoogle Scholar
  145. Witter, Jeffrey B., and Stephen Self. 2007. The Kuwae (Vanuatu) eruption AD 1452: Potential magnitude and volatile release. Bulletin of Volcanology 69 (3): 301–318.CrossRefGoogle Scholar
  146. Zambri, Brian, Allegra N. LeGrande, Alan Robock, and Joanna Slawinska. 2017. Northern Hemisphere winter warming and summer monsoon reduction after volcanic eruptions over the last millennium. Journal of Geophysical Research: Atmospheres 122: 7971–7989.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Hydrological Engineering and Water ResourcesVienna University of TechnologyViennaAustria

Personalised recommendations