Skip to main content

Thermonuclear Fusion

  • Chapter
  • First Online:
Resistivity Recovery in Fe and FeCr alloys

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

  • 300 Accesses

Abstract

The motivation of this work arises from the need of developing new technologies in order to build the future nuclear fusion reactors . Section 1.1 is devoted to provide an overview of fusion energy, showing the interest of its development and the key problems that need to be overcome for this purpose. Section 1.2 introduces specifically the problematic of radiation damage in the constituent materials of fusion reactors. Next, Sect. 1.3 explains the strong commitment of fusion research community in the development of modelling and experimental validation approach, as a useful tool for radiation resistant materials development in the medium term. Finally, Sect. 1.4 introduces the specific interest and problematic of structural materials which can be modelled to a first approximation as binary FeCrx alloys and which are the object of study of this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the future, it has to be noted that there are other reactions, indicated in the text, which use 3He, Li or B and are completely free of radioactivity. Note that lithium and boron are safe and abundant elements.

  2. 2.

    Gamma radiation is originated in fusion reactors from different processes like:

    • D + p → 3He + γ (5.5 MeV)

    • T + p → 4He + γ (20 MeV)

    • D + D → 4He + γ (24 MeV)

    • D + T → 5He + γ (17 MeV)

    • 9Be + 4He → n + 12C + γ (4.44 MeV)

    • 10B + 4He → p + 13C + y (3.1, 3.7, 3.85 MeV)

    +… every nuclear reaction between the generated neutrons with the constituent reactor materials.

  3. 3.

    Although the real problem due to T leakage would be its inhalation.

  4. 4.

    In the case of magnetic confinement fusion. Inertial confinement fusion (ICF) is also a developing energy. In ICF reactors D + T ignition will be produced by means of concentration of powerful laser beams in the central point of a vacuum chamber where the fuel pellet will be placed.

  5. 5.

    Demonstration Power Plant [6].

  6. 6.

    The model alloys Fe1−x–Crx are the base of the reduced-activation ferritic/martensitic steels which have been chosen as main candidates to build the structure of the first wall in future fusion reactors.

  7. 7.

    RR is a very specific experimental technique traditionally used to study the mobility and kinetics of simple defects in metals by means of the follow-up of the residual resistivity of a sample along an isochronal step-annealing after irradiation at cryogenic temperatures.

  8. 8.

    Also liquid breeder blanket technology is being considered as an alternative to solid breeders in future fusion devices.

  9. 9.

    Although it is more and more accepted in the scientific community that this analogy is not straightforward given the effects of injected interstitials—in swelling and embrittlement—as well as dose rate effects in the evolution of the microstructure.

  10. 10.

    Nanocomposited oxide-dispersion-strengthened (ODS) ferritic steels.

References

  1. Chen FF (2011) An indispensable truth: how fusion power can save the planet. Springer, New York

    Book  Google Scholar 

  2. International Energy Agency (2015) World energy outlook 2015. OECD, Paris

    Google Scholar 

  3. Dolan TJ (1982) Fusion research: principles, experiments and technology. Pergamon Press, New York

    Google Scholar 

  4. https://www.iter.org/proj/inafewlines

  5. https://www.euro-fusion.org/

  6. http://fusionforenergy.europa.eu/understandingfusion/demo.aspx

  7. ASTM E693—12 (2012) Practice for Characterizing Neutron Exposures in Iron and Low Alloy Steels in Terms of Displacements Per Atom (DPA), E 706(ID). ASTM International

    Google Scholar 

  8. Norgett MJ, Robinson MT, Torrens IM (1975) A proposed method of calculating displacement dose rates. Nucl Eng Des 33:50–54. doi:10.1016/0029-5493(75)90035-7

    Article  Google Scholar 

  9. https://mcnp.lanl.gov/

  10. Serruys Y, Trocellier P, Miro S et al (2009) JANNUS: a multi-irradiation platform for experimental validation at the scale of the atomistic modelling. J Nucl Mater 386–388:967–970. doi:10.1016/j.jnucmat.2008.12.262

    Article  Google Scholar 

  11. Averback RS, Benedek R, Merkle K (1978) Correlations between ion and neutron irradiations: defect production and stage I recovery. J Nucl Mater 75:162–166. doi:10.1016/0022-3115(78)90040-5

    Article  Google Scholar 

  12. Tanaka T, Oka K, Ohnuki S et al (2004) Synergistic effect of helium and hydrogen for defect evolution under multi-ion irradiation of Fe–Cr ferritic alloys. J Nucl Mater 329–333:294–298. doi:10.1016/j.jnucmat.2004.04.051

    Article  Google Scholar 

  13. Bacon DJ, Gao F, Osetsky YN (2000) The primary damage state in fcc, bcc and hcp metals as seen in molecular dynamics simulations. J Nucl Mater 276:1–12. doi:10.1016/S0022-3115(99)00165-8

    Article  Google Scholar 

  14. Zinkle SJ (2005) Advanced materials for fusion technology. Fusion Eng Des 74:31–40. doi:10.1016/j.fusengdes.2005.08.008

    Article  Google Scholar 

  15. Konobeev YV, Dvoriashin AM, Porollo SI, Garner FA (2006) Swelling and microstructure of pure Fe and Fe–Cr alloys after neutron irradiation to ∼ 26dpa at 400°C. J Nucl Mater 355:124–130. doi:10.1016/j.jnucmat.2006.04.011

    Article  Google Scholar 

  16. Kohyama A, Hishinuma A, Gelles DS et al (1996) Low-activation ferritic and martensitic steels for fusion application. J Nucl Mater 233–237:138–147. doi:10.1016/S0022-3115(96)00327-3

    Article  Google Scholar 

  17. Kayano H, Kimura A, Narui M et al (1988) Irradiation embrittlement of neutron-irradiated low activation ferritic steels. J Nucl Mater 155–157:978–981. doi:10.1016/0022-3115(88)90452-7

    Article  Google Scholar 

  18. Dusek M, Hunt C (2002) Test methods for evaluating the reliability of PCB finishes using lead-free alloys—a guide

    Google Scholar 

  19. Rossiter PL (1987) The electrical resistivity of metals and alloys. Cambridge University Press, Cambridge [Cambridgeshire], New York

    Google Scholar 

  20. Mirebeau I, Hennion M, Parette G (1984) First measurement of short-range-order inversion as a function of concentration in a transition alloy. Phys Rev Lett 53:687–690. doi:10.1103/PhysRevLett.53.687

    Google Scholar 

  21. Mirebeau I, Parette G (2010) Neutron study of the short range order inversion in Fe_{1 − x}Cr_{x}. Phys Rev B. doi:10.1103/PhysRevB.82.104203

  22. Terentyev DA, Malerba L, Chakarova R et al (2006) Displacement cascades in Fe–Cr: a molecular dynamics study. J Nucl Mater 349:119–132. doi:10.1016/j.jnucmat.2005.10.013

    Google Scholar 

  23. Blewitt TH, Coltman RR, Klabunde CE (1960) Annealing kinetics of neutron-irradiated aluminium and copper. Aust J Phys 13:347–353. doi:10.1071/PH600347a

    Google Scholar 

  24. Tesk JA, Jones EC, Kauffman JW (1964) Stage I recovery spectrum of pure copper irradiated with electrons over the range 1.25 to 3.25 MeV. Phys Rev 133:A288–A293. doi:10.1103/PhysRev.133.A288

    Google Scholar 

  25. Maury F, Biget M, Vajda P et al (1978) Frenkel pair creation and stage I recovery in W crystals irradiated near threshold. Radiat Eff 38:53–65. doi:10.1080/00337577808233209

    Google Scholar 

  26. Omar AM (1978) Low temperature irradiation of iron, zirconium and copper by 10 to 16 MeV protons. Mater Sci, McMaster University

    Google Scholar 

  27. Takaki S, Fuss J, Kuglers H et al (1983) The resistivity recovery of high purity and carbon doped iron following low temperature electron irradiation. Radiat Eff 79:87–122. doi:10.1080/00337578308207398

    Google Scholar 

  28. Maury F, Lucasson A, Lucasson P et al (1985) Interstitial migration in dilute FeSi and FeAu alloys. J Phys F Met Phys 15:1465–1484. doi:10.1088/0305-4608/15/7/007

    Google Scholar 

  29. Maury F, Lucasson A, Lucasson P et al (1986) Interstitial mobility in FeNi, FeCo and FeMn dilute alloys. J Phys F Met Phys 16:523. doi:10.1088/0305-4608/16/5/004

    Google Scholar 

  30. Benkaddour A, Dimitrov, C, Dimitrov O (1987) Irradiation-induced defects in ferritic FeCr alloys. Mater Sci Forum 15–18:1263–1268. doi:10.4028/www.scientific.net/MSF.15-18.1263

    Google Scholar 

  31. Matsui H, Takehana S, Guinan MW (1988) Resistivity recovery in high purity iron after fission- and fusion- neutron irradiation. J Nucl Mater 155–157:1284–1289

    Article  Google Scholar 

  32. Nikolaev AL, Arbuzov VL, Davletshin AE (1997) On the effect of impurities on resistivity recovery, short-range ordering, and defect migration in electron-irradiated concentrated Fe–Cr alloys. J Phys Condens Matter 9:4385–4402. doi:10.1088/0953-8984/9/21/006

    Google Scholar 

  33. Abe H, Kuramoto E (1999) Interaction of solutes with irradiation-induced defects of electron-irradiated dilute iron alloys. J Nucl Mater 271–272:209–213. doi:10.1016/S0022-3115(98)00741-7

    Google Scholar 

  34. Chimi Y, Iwase A, Ishikawa N (1999) Defect accumulation behavior in iron irradiated with energetic ions and electrons at 80 K. J Nucl Mater 271–272:236–240. doi:10.1016/S0022-3115(98)00742-9

    Google Scholar 

  35. Nikolaev AL (2007) Specificity of stage III in electron-irradiated Fe-Cr alloys. Philos Mag 87:4847–4874. doi:10.1080/14786430701468977

    Google Scholar 

  36. Boutard JL, Caturla MJ, Dudarev SL, Willaime F (2009) Strategic objectives for fusion materials modelling and experimental validation. EFDA. http://www.efda.org/downloads/

  37. Stork D, et al. (2012) Assessment of the EU R&D programme on DEMO Structural and High-Heat Flux Materials

    Google Scholar 

  38. Linsmeier C, Fu C-C, Kaprolat A et al (2013) Advanced materials characterization and modeling using synchrotron, neutron, TEM, and novel micro-mechanical techniques—a European effort to accelerate fusion materials development. J Nucl Mater. doi:10.1016/j.jnucmat.2013.04.042

    Google Scholar 

  39. Fusion Electricity (2013) A roadmap to the realisation of fusion energy. EFDA. http://www.efda.org/downloads/

  40. Maury F, Lucasson P, Lucasson A et al (1987) A study of irradiated FeCr alloys: deviations from Matthiessen rule and interstitial migration. J Phys F: Met Phys 17:1143–1165

    Article  Google Scholar 

  41. Dimitrov C, Benkaddour A, Corbel C, Moser P (1991) Properties of point-defects in model ferritic steels. Ann Chim-Sci Mater 16:319–324

    Google Scholar 

  42. Fu C-C, Dalla Torre J, Willaime F et al (2005) Multiscale modelling on defect kinetics in irradiated iron. Nat Mater 4:68–74

    Article  Google Scholar 

  43. Terentyev D, Castin N, Ortiz CJ (2012) Correlated recombination and annealing of point defects in dilute and concentrated Fe–Cr alloys. J Phys Condens Matter 24:475404. doi:10.1088/0953-8984/24/47/475404

    Google Scholar 

  44. Vehanen A, Hautojärvi P, Johansson J et al (1982) Vacancies and carbon impurities in α- iron: electron irradiation. Phys Rev B 25:762–780

    Article  Google Scholar 

  45. Malerba L, Caro A, Wallenius J (2008) Multiscale modelling of radiation damage and phase transformations: the challenge of FeCr alloys. J Nucl Mater 382:112–125. doi:10.1016/j.jnucmat.2008.08.014

    Google Scholar 

  46. International Energy Agency, SourceOECD (Online service) (2009) World energy outlook 2009. International Energy Agency, Paris

    Google Scholar 

  47. Kim K, Im K, Kim HC et al (2015) Design concept of K-DEMO for near-term implementation. Nucl Fusion 55:053027. doi:10.1088/0029-5515/55/5/053027

    Article  Google Scholar 

  48. Catalán JP, Sauvan P, Sanz J (2013) Shutdown dose rate assessment for a DCLL blanket-based reactor: application of the R2S-UNED approach. Fusion Eng Des 88:2088–2091. doi:10.1016/j.fusengdes.2013.04.011

    Article  Google Scholar 

  49. Mota F, Ortiz CJ, Vila R et al (2013) Calculation of damage function of Al2O3 in irradiation facilities for fusion reactor applications. J Nucl Mater 442:S699–S704. doi:10.1016/j.jnucmat.2012.11.002

    Article  Google Scholar 

  50. Straalsund JL, Powell RW, Chin BA (1982) An overview of neutron irradiation effects in LMFBR materials. J Nucl Mater 108–109:299–305. doi:10.1016/0022-3115(82)90499-8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Begoña Gómez-Ferrer .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Author(s)

About this chapter

Cite this chapter

Gómez-Ferrer, B. (2016). Thermonuclear Fusion. In: Resistivity Recovery in Fe and FeCr alloys. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-38857-1_1

Download citation

Publish with us

Policies and ethics