Skip to main content

Europium Tetrakis Dibenzoylmethide Triethylammonium: Synthesis, Additives, and Applications

  • Chapter
  • First Online:
Triboluminescence

Abstract

There are a number of techniques currently being used for damage detection and monitoring of civil, aerospace, and military structures and aircraft. However, the major drawbacks of the current techniques are that they do not provide in situ and distributed sensing. Wiedemann and Schmidt defined triboluminescence (TL) as the emission of light produced by mechanical action. In recent years, triboluminescent materials have been proposed for use as the active element in smart structural sensors. To sense damage, these materials would be embedded into the structure. If damage occurs to this structure, the embedded triboluminescent material would give off visible light. This light could be transferred by lightweight fiber optics or wireless detector to a computer-based detection system to warn occupants in real time that a significant impact event has occurred. In addition, the triboluminescent based sensor could allow for real-time monitoring of both the magnitude and location of damage to the host structure. One of the brightest triboluminescent materials currently known is europium tetrakis dibenzoylmethide triethylammonium (EuD4TEA). This research delved into the feasibility of enhancing the properties of EuD4TEA by (a) modifying the synthesis process and (b) determining the reproducibility of the synthetic procedure by measuring the batch variation error. Further, the study evaluated the possible techniques that can be incorporated in to the synthesis technique to enhance the TL by (a) introducing various inorganic and organic dopants; (b) optimizing dopant concentration; (c) studying solvents effects on TL; and (d) evaluating the effects of ionizing radiation on TL. In addition, the research discusses in depth the experimental development of a simple apparatus for the measurement of TL in the laboratory by using a twofold technique consisting of measuring the triboluminecent  intensity and/or spectral characterization. This enabled for the determination of a unique decay time for a particular compound. In addition, impact studies have been conducted to correlate the impact energy (velocity) with triboluminescent emission, thus allowing a system to detect and evaluate the magnitude of the impacts. The spectra of these compounds have been analyzed in detail to investigate the cause of luminescence and designate the transitional energy levels for each of the peaks. Finally in order to study the feasibility for structural and/or sensor application, the effect of introducing EuD4TEA into poly(methyl methacrylate) and its impact on the TL emission spectra are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Olawale, D. O., Dickens, T., Sullivan, W. G., Okoli, O. I., Sobanjo, J. O., & Wang, B. (2011). Journal of Luminescence, 131, 1407.

    Article  Google Scholar 

  2. Childs, P., Wong, A. C., Terry, W., & Peng, G. D. (2008). Measurement Science and Technology, 19, 65301.

    Article  Google Scholar 

  3. Chong, K. P., Carino, N. J., & Washer, G. (2003). Smart Materials and Structures, 12, 483.

    Article  Google Scholar 

  4. Merzbacher, C. I., Kersey, A. D., & Friebele, E. J. (1996). Smart Materials and Structures, 5, 196.

    Article  Google Scholar 

  5. Fontenot, R. S., Bhat, K. N., Hollerman, W. A., & Aggarwal, M. D. (2011). Materials Today, 14, 292.

    Article  Google Scholar 

  6. Walton, A. J. (1977). Advances in Physics, 26, 887.

    Article  Google Scholar 

  7. Chandra B. (1998). In D. R. Vij (Ed.), Luminescence of solids (pp. 361–389). New York, NY: Plenum.

    Google Scholar 

  8. Chandra, B. P., & Zink, J. I. (1980). Physical Review B, 21, 816.

    Article  Google Scholar 

  9. Meyer, K., Obrikat, D., & Rossberg, M. (1970). Krist and Tech, 5, 5.

    Article  Google Scholar 

  10. Sage, I. C., & Bourhill, G. (2001). Journal of Materials Chemistry, 11, 231.

    Article  Google Scholar 

  11. Sage, I. C., Badcock, R., Humberstone, L., Geddes, N. J., Kemp, M., & Bourhill, G. (1999). Smart Materials and Structures, 8, 504.

    Article  Google Scholar 

  12. Chandra, B., Baghel, R. N., & Chandra, V. (2010). Chalcogenide Letters, 7, 1.

    Google Scholar 

  13. Sage, I. C., Humberstone, L., Oswald, I., Lloyd, P., & Bourhill, G. (2001). Smart Materials and Structures, 10, 332.

    Article  Google Scholar 

  14. Sage, I. C. & Geddes, N. J. (1999). US Patent 5905260.

    Google Scholar 

  15. Womack, F. N. (2004). Development of a drop tower to study the triboluminescence of ZnS:Mn with attention to possible applications to spacecraft. Lafayette, LA: University of Louisiana at Lafayette.

    Google Scholar 

  16. Xu, C. N., Zheng, X. G., Akiyama, M., Nonaka, K., & Watanabe, T. (2000). Applied Physics Letters, 76, 179.

    Article  Google Scholar 

  17. Xu, C. N., Watanabe, T., Akiyama, M., & Zheng, X. G. (1999). Applied Physics Letters, 74, 1236.

    Article  Google Scholar 

  18. Goods, S. H., Dentinger, P. M., & Whinnery, L. L. (2003). FLASHFOAM: a triboluminescent polymer foam for mechanical sensing. Livermore, CA: Sandia National Laborato.

    Google Scholar 

  19. Dickinson, J. T., Jensen, L. C., & Bhattacharya, S. K. (1985). J Vac Sci Technol A Vacuum Surfaces Film, 3, 1398.

    Google Scholar 

  20. Leverenz, H. (1950). Introduction to luminescence of solids. New York, NY: Wiley.

    Google Scholar 

  21. Gribkovskii, V. P. (1988). In D. R. Vij (Ed.), Luminescence of solid (1st ed., pp. 1–40). New York, NY: Plenum.

    Google Scholar 

  22. Williams, F. (1966). Luminescence of inorganic solids (1st ed.). New York, NY: Academic.

    Google Scholar 

  23. Nakazawa, E. (2006). In Yen, W. M., S. Shionoya, & H. Yamamoto (Eds.) Phosphor handbook (2nd ed., pp. 11–70). Boca Raton, FL: CRC Press.

    Google Scholar 

  24. Ronda, C. R. (2007). In C. R. Ronda (Ed.), Luminescence: From theory to applications (1st ed., pp. 1–34). Weinheim: Wiley.

    Google Scholar 

  25. Nakazawa, E. (2006). In W. M. Yen, S. Shionoya, & H. Yamamoto (Eds.) Fundamentals of phosphors (1st ed., pp. 1–129). Boca Raton, FL: CRC Press.

    Google Scholar 

  26. Yen, W. M., & Weber, M. J. (2004). Inorganic phosphors: Compositions, preparation and optical properties (1st ed.). Boca Raton, FL: CRC Press.

    Book  Google Scholar 

  27. Yen, W. M., Shionoya, S., & Yamamoto, H. (2006). Practical applications of phosphors (1st ed.). Boca Raton, FL: CRC Press.

    Book  Google Scholar 

  28. Pascoe, K. J. (1973). Chemical and physical properties of materials for electrical engineers. New York, NY: Wiley.

    Google Scholar 

  29. Serway, R. A., Moses, C. J., & Moyer, C. A. (2004). Modern physics (3rd ed.). Belmont, CA: Brooks Cole.

    Google Scholar 

  30. Csele, M. (2004). Fundamentals of light sources and lasers (1st ed.). Hoboken, NJ: Wiley.

    Book  Google Scholar 

  31. Newbacher, C., Jatla, A. (2003). In R. A. Charvat (Ed.), Color. Plast (2nd ed., pp. 242–257). New York, NY: John Wiley & Sons, Inc., New York, NY.

    Google Scholar 

  32. Pringsheim, P., & Vogel, M. (1943). Luminescence of liquids and solids and its practical applications. New York, NY: Interscience Publishers, Inc.

    Google Scholar 

  33. Hitz, C. B. (1991). Understanding laser technology: An intuitive introduction to basic and advanced laser concepts (2nd ed.). Tulsa, OK: Pennwell Corp.

    Google Scholar 

  34. Sze, S. M. & Ng, K. K. (2006) In Physics of semiconductor devices (3rd ed., pp. 7–16). New York, NY: John Wiley & Sons.

    Google Scholar 

  35. Lakowicz, J. R. (2006). In Principles of fluorescence spectroscopy (3rd ed., pp. 1–25). New York, NY: Springer.

    Google Scholar 

  36. Hollerman, W. A., Fontenot, R. S., Bhat, K. N., Aggarwal, M. D., Guidry, C. J., & Nguyen, K. M. (2010). Optical Materials (Amsterdam), 34, 1547.

    Google Scholar 

  37. Fontenot, R. S., Hollerman, W. A., Aggarwal, M. D., Bhat, K. N., & Goedeke, S. M. (2012). Measurement, 45, 431.

    Article  Google Scholar 

  38. Xu, C. N., Watanabe, T., Akiyama, M., & Zheng, X. G. (1999). Materials Research Bulletin, 34, 1491.

    Article  Google Scholar 

  39. Lakshmanan, A. (2007). In Lumin. disp. phosphors phenom. appl. (1st ed., pp. 9–31). New York, NY: Nova Science Publishers Inc.

    Google Scholar 

  40. Sweeting, L. M., Cashel, M. L., Dott, M., Gingerich, J. M., Guido, J. L., Kling, J. A., et al. (1992). Molecular Crystals and Liquid Crystals, 211, 389.

    Article  Google Scholar 

  41. Camara, C. G., Escobar, J. V., Hird, J. R., & Putterman, S. J. (2008). Nature, 455, 1089.

    Google Scholar 

  42. Xu, C. N., Zheng, X. G., Watanabe, T., Akiyama, M., & Usui, I. (1999). Thin Solid Films, 352, 273.

    Article  Google Scholar 

  43. Freund, F. T. (2003). Journal of Scientific Research, 17, 37.

    Google Scholar 

  44. Chandra, V., & Chandra, B. (2012). Journal of Luminescence, 132, 858.

    Article  Google Scholar 

  45. Chandra, B., & Bisen, D. P. (1992). Physica Status Solidi, 132, K101.

    Article  Google Scholar 

  46. Chandra, B., Mahobia, S. K., Jha, P., Kuraria, R. K., Kuraria, S. R., Baghel, R. N., et al. (2008). Journal of Luminescence, 128, 2038.

    Article  Google Scholar 

  47. Akiyama, M., Nishikubo, K., & Nonaka, K. (2003). Applied Physics Letters, 83, 2003.

    Article  Google Scholar 

  48. Xu, C. N., Yamada, H., Wang, X., & Zheng, X. G. (2004). Applied Physics Letters, 84, 3040.

    Article  Google Scholar 

  49. Chandra, B., Xu, C. N., Yamada, H., & Zheng, X. G. (2010). Journal of Luminescence, 130, 442.

    Article  Google Scholar 

  50. Kim, J. S., Kibble, K., Kwon, Y. N., & Sohn, K.-S. (2009). Optics Letters, 34, 1915.

    Article  Google Scholar 

  51. Chandra, B., Baghel, R. N., Luka, A. K., Sanodiya, T. R., Kuraria, R. K., & Kuraria, S. R. (2009). Journal of Luminescence, 129, 760.

    Article  Google Scholar 

  52. Jia, J., Yei, M., & Jia, W. (2006). Optical Materials (Amsterdam), 28, 974.

    Google Scholar 

  53. Xu, C. N. (2002). In Encycl. Smart Mater (pp. 190–201). New York, NY: John Wiley & Sons, Inc.

    Google Scholar 

  54. Reynolds, G. T., & Austin, R. H. (2000). Journal of Luminescence, 92, 79.

    Article  Google Scholar 

  55. Chandra, B. (2011). Journal of Luminescence, 131, 1203.

    Article  Google Scholar 

  56. Sohn, K.-S., Seo, S. Y., Kwon, Y. N., & Park, H. D. (2002). Journal of the American Ceramic Society, 85, 712.

    Google Scholar 

  57. Kim, J. S., Kwon, Y.-N., Shin, N., & Sohn, K.-S. (2007). Applied Physics Letters, 90, 241913.

    Article  Google Scholar 

  58. Akiyama, M. (2002). Journal of Luminescence, 97, 13.

    Article  Google Scholar 

  59. Akiyama, M., Xu, C. N., Matsui, H., Nonaka, K., & Watanabe, T. (1999). Applied Physics Letters, 75, 2548.

    Article  Google Scholar 

  60. Chandra, B., Sonwane, V. D., Haldar, B. K., & Pandey, S. (2011). Optical Materials (Amsterdam), 33, 444.

    Google Scholar 

  61. Zheng, H., Terasaki, N., Yamada, H., & Xu, C. N. (2009). Japanese Journal of Applied Physics, 48, 04C109.

    Google Scholar 

  62. Reddy, D. R., & Reddy, B. K. (2002). Applied Physics Letters, 81, 460.

    Article  Google Scholar 

  63. Li, C., Adachi, Y., Imai, Y., Nishikubo, K., & Xu, C. N. (2007). Journal of the Electrochemical Society, 154, J362.

    Article  Google Scholar 

  64. Alzetta, G., Chudáček, I., & Scarmozzino, R. (1970). Physica Status Solidi, 1, 775.

    Article  Google Scholar 

  65. Goedeke, S. M., Allison, S. W., Womack, F. N., Bergeron, N. P., & Hollerman, W. A. (2001). Triboluminescence and its application to space-based damage sensors. Oak Ridge, TN: Oak Ridge Nation Laboratory.

    Google Scholar 

  66. Hollerman, W. A., Allison, S. W., Goedeke, S. M., Boudreaux, P., Guidry, R., & Gates, E. (2003). IEEE Transactions on Nuclear Science, 50, 754.

    Article  Google Scholar 

  67. Hollerman, W. A., Goedeke, S. M., Bergeron, N. P., Muntele, C. I., Allison, S. W., × Ila, D. (2005). Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 241, 578.

    Google Scholar 

  68. Womack, F. N., Goedeke, S. M., Bergeron, N. P., Hollerman, W. A., & Allison, S. W. (2004). IEEE Transactions on Nuclear Science, 51, 1737.

    Article  Google Scholar 

  69. Bergeron, N. P., Hollerman, W. A., Goedeke, S. M., & Moore, R. J. (2008). International Journal of Impact Engineering, 35, 1587.

    Article  Google Scholar 

  70. Bergeron, N. P., Hollerman, W. A., Goedeke, S. M., Hovater, M., Hubbs, W., Finchum, A., et al. (2006). International Journal of Impact Engineering, 33, 91.

    Article  Google Scholar 

  71. Bergeron, N. P. (2006). Detection of triboluminescence from ZnS:Mn and ZnS:Cu. Lafayette, LA: University of Louisiana at Lafayette.

    Google Scholar 

  72. Malespin, C. A. (2007). Detecting triboluminescent light from frontal meso-velocity impacts. Lafayette, LA: University of Louisiana at Lafayette.

    Google Scholar 

  73. Fontenot, R. S. (2010). Measuring the triboluminescence characteristics of ZnS:Mn generated during ballistic impacts. Lafayette, LA: University of Louisiana at Lafayette.

    Google Scholar 

  74. Fontenot, R. S., Hollerman, W. A., & Goedeke, S. M. (2011). Materials Letters, 65, 1108.

    Article  Google Scholar 

  75. Fontenot, R. S., Hollerman, W. A., Steuart, M. S., & Broussard, B. M. (2009). AIP Conference Proceedings, 1195, 1413.

    Article  Google Scholar 

  76. Hurt, C. R., Mcavoy, N., Bjorklund, S., & Flipescu, N. (1966). Nature, 212, 179.

    Article  Google Scholar 

  77. Sweeting, L. M., & Rheingold, A. L. (1987). Journal of the American Chemical Society, 109, 2652.

    Article  Google Scholar 

  78. Cotton, F. A., Daniels, L. M., & Huang, P. (2001). Inorganic Chemistry Communications, 4, 319.

    Article  Google Scholar 

  79. Carnall, W. T., Fields, P. R., & Rajnak, K. (1968). The Journal of Chemical Physics, 49, 4450.

    Article  Google Scholar 

  80. Martin, W. C., Zalubas, R., & Hagan, L. (1978). Natl Stand Ref Data Syst NSRDS-NBS 60 (pp. 1–411). United States National Bureau of Standards, Washington, DC.

    Google Scholar 

  81. Fontenot, R. S., Hollerman, W. A., Bhat, K. N., Allison, S. W., & Aggarwal, M. D. (2013). Journal of Theoretical and Applied Physics, 7, 30.

    Article  Google Scholar 

  82. Aggarwal, M. D., Penn, B. G., Miller, J., Sadate, S., & Batra, A. K. (2008). Triboluminescent materials for smart optical damage sensors for space applications. Huntsville, AL: Marshall Space Flight Center.

    Google Scholar 

  83. Takada, N., Peng, J., & Minami, N. (2001). Synthetic Metals, 121, 1745.

    Article  Google Scholar 

  84. Hollerman, W. A., Bergeron, N. P., Womack, F. N., Goedeke, S. M., & Allison, S. W. (2004). IEEE Transactions on Nuclear Science, 51, 1080.

    Article  Google Scholar 

  85. Hollerman, W. A., Goedeke, S. M., Moore, R. J., Boatner, L. A., Allison, S. W., & Fontenot, R. S. (2007). In 2007 I.E. Nucl. Sci. Symp. (pp. 1368–1372). Honolulu, HI: IEEE.

    Google Scholar 

  86. Fontenot, R. S., Hollerman, W. A., Bhat, K. N., & Aggarwal, M. D. (2012). Journal of Theoretical and Applied Physics, 6, 15.

    Article  Google Scholar 

  87. Ralchenko, Y, Kramida, A. E., & Reader, J. (2011).

    Google Scholar 

  88. Fontenot, R. S., Hollerman, W. A., Bhat, K. N., & Aggarwal, M. D. (2012). Journal of Luminescence, 132, 1812.

    Article  Google Scholar 

  89. Hollerman, W. A., Fontenot, R. S., Bhat, K. N., & Aggarwal, M. D. (2012). Metallurgical and Materials Transactions A, 43, 4200.

    Article  Google Scholar 

  90. Sweeting, L. M., & Rheingold, A. L. (1988). Journal of Physical Chemistry, 92, 5648.

    Article  Google Scholar 

  91. Hocking, M. B., Vandervoort, M., Francies, W., McKiernan, J., & Zink, J. I. (1992). Journal of Luminescence, 51, 323.

    Article  Google Scholar 

  92. Fontenot, R. S., Bhat, K. N., Hollerman, W. A., Aggarwal, M. D., & Nguyen, K. M. (2012). CrystEngComm, 14, 1382.

    Article  Google Scholar 

  93. Fontenot, R. S., Hollerman, W. A., Bhat, K. N., Aggarwal, M. D. (2013). Adv. Mater. Lett. (Accepted) (2013).

    Google Scholar 

  94. Yang, W. C. (2003). Handbook of fluidization and fluid-particle systems. Boca Raton, FL: CRC Press.

    Book  Google Scholar 

  95. Bevington, P. R. & Robinson, D. K. (2003). Data reduction and error analysis for the physical sciences (3rd ed.). McGraw-Hill Science/Engineering/Math.

    Google Scholar 

  96. Bhat, K. N., Fontenot, R. S., Hollerman, W. A., & Aggarwal, M. D. (2012). International Journal of Chemistry, 1, 100.

    Google Scholar 

  97. Li, D. P., Li, C. H., Wang, J., Kang, L. C., Wu, T., Li, Y. Z., et al. (2009). European Journal of Inorganic Chemistry, 2009, 4844.

    Article  Google Scholar 

  98. Fontenot, R. S., Hollerman, W. A., Meche, J. A., Williams, S. A., McRaie, C. M., & Baltz, G. L. (2016). Solid State Sciences.

    Google Scholar 

  99. Zeng, X. R., Xiong, R. G., You, X. Z., & Cheung, K. K. (2000). Inorganic Chemistry Communications, 3, 341.

    Article  Google Scholar 

  100. Khan, M. T. H. (2007). In M. T. H. Khan (Ed.) Bioact heterocycles IV (1st ed., pp. 75–98). Heidelberg: Springer.

    Google Scholar 

  101. Krishnamoorthy, B., & Rema, J. (2012). Handbook of herbs and spices, volume 1 (2nd ed.). Boca Raton, FL: CRC Press.

    Google Scholar 

  102. Fontenot, R. S., Bhat, K. N., Hollerman, W. A., & Aggarwal, M. D. (2012). Crystal Research and Technology, 47, 573.

    Article  Google Scholar 

  103. Burrows, H. D., & Kemp, T. J. (1974). Chemical Society Reviews, 3, 139.

    Article  Google Scholar 

  104. Lermontov, A. S., Lermontova, E. K., & Wang, Y.-Y. (2009). Inorganica Chimica Acta, 362, 3751.

    Article  Google Scholar 

  105. Fontenot, R. S., Hollerman, W. A., Bhat, K. N., & Aggarwal, M. D. (2013). Journal of Luminescence, 134, 477.

    Article  Google Scholar 

  106. Hollerman, W. A., Glass, G. A., & Allison, S. A. (1999). MRS Online Proceedings Library, 560, 335.

    Article  Google Scholar 

  107. Birks, J. B. (1951). Proceedings of the Physical Society Section A, 64, 874.

    Article  Google Scholar 

  108. Hollerman, W. A., Fisher, J. H., Holland, L. R., & Czirr, J. B. (1993). IEEE Transactions on Nuclear Science, 40, 1355.

    Article  Google Scholar 

  109. Hollerman, W. A., Fisher, J. H., Ila, D., Jenkins, G. M., & Holland, L. R. (1995). Journal of Materials Research, 10, 1861.

    Article  Google Scholar 

  110. Hollerman, W. A., Goedeke, S. M., Bergeron, N. P., Moore, R. J., & Allison, S. W. (2005). and L. A. Lewis. In E. W. Taylor (Ed.), Photonics Sp. Environ. X (pp. 58970F–10). San Diego, CA: SPIE.

    Chapter  Google Scholar 

  111. Hathaway, G. J., & Proctor, N. H. (2004). Proctor and Hughes’ chemical hazards of the workplace (5th ed.). New York, NY: Wiley Interscience.

    Book  Google Scholar 

  112. Milne, G. W. (Ed.). (2005). Gardner’s commercially important chemicals: Synonyms, trade names, and properties (1st ed.). New York, NY: Wiley Interscience.

    Google Scholar 

  113. Allen, D. W., Tebby, J. C., & Van de Grampel, J. C. (2005). In D. W. Allen, J. C. Tebby, & D. Loakes (Eds.), Organophosphorus chemistry (Vol. 34, p. 385). Cambridge: Royal Society of Chemistry.

    Chapter  Google Scholar 

  114. Fontenot, R. S., Bhat, K. N., Hollerman, W. A., & Aggarwal, M. D. (2013). Sensors Transducers Journal, 149, 109.

    Google Scholar 

  115. Chandra, B., Chandra, V., Jha, P., Patel, R., Shende, S. K., Thaker, S., et al. (2012). Journal of Luminescence, 132, 2012.

    Article  Google Scholar 

  116. Koren H (2004) Illustrated dictionary and resource directory of environmental and occupational health, 2nd edn. Boca Raton, FL: CRC Press.

    Google Scholar 

  117. Pohanish, R. P., & Greene, S. A. (2009). Wiley guide to chemical incompatibilities (3rd ed.). New York, NY: Wiley.

    Book  Google Scholar 

  118. Pohanish, R. P. (2011). Sittig’s handbook of toxic and hazardous chemicals and carcinogens (6th ed.). Berlin: Elsevier.

    Google Scholar 

  119. Fontenot, R. S., Bhat, K. N., Owens, C. A., Hollerman, W. A., & Aggarwal, M. D. (2015). Journal of Luminescence, 156, 428.

    Article  Google Scholar 

  120. Fontenot, R. S., Bhat, K. N., Hollerman, W. A., Alapati, T. R., & Aggarwal, M. D. (2013). ECS Journal of Solid State Science and Technology, 2, P384.

    Article  Google Scholar 

  121. Fontenot, R. S., Hollerman, W. A., Bhat, K. N., Aggarwal, M. D., & Penn, B. P. (2014). Polymer Journal, 46, 111.

    Article  Google Scholar 

  122. Fontenot, R. S., Bhat, K. N., Hollerman, W. A., & Aggarwal, M. D. (2013). In M. S. A. Moustafa (Ed.), Eur. Synth. Charact. Potential Appl. (1st ed., pp. 85–160). Hauppauge, NY: Nova Science Publishers Inc.

    Google Scholar 

  123. Bhat, K. N., Fontenot, R. S., Hollerman, W. A., Alapati, T. R., & Aggarwal, M. D. (2012). International Journal of Chemistry, 2, 165.

    Google Scholar 

  124. Mantia, F. L. (2002). Handbook of plastics recycling. Shrewsbury: Smithers Rapra Technology.

    Google Scholar 

  125. Zollinger, H. (2001). Color chemistry (3rd ed.). New York, NY: Wiley-VCH.

    Google Scholar 

  126. Fontenot RS, Bhat KN, Hollerman WA, Aggarwal MD (2013) Polym Adv Technol

    Google Scholar 

  127. Miessler, G. L., & Tarr, D. A. (2010). Inorganic chemistry (4th ed.). Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ross S. Fontenot .

Editor information

Editors and Affiliations

Appendices

Appendix 1: Synthesizing EUD4TEA

The materials required to synthesize EuD4TEA include the following:

  1. 1.

    Europium (III) nitrate hydrate, powder, 99.999 % (Metall Rare Earth Limited, 6371).

  2. 2.

    1,3-diphenyl-1,3-propanedione (dibenzoylmethane), powder, 98 % (Sigma-Aldrich, D33454).

  3. 3.

    Triethylamine (TEA), liquid, ≥99.5 % (Sigma-Aldrich, 471283).

  4. 4.

    25 mL of solvent.

    1. (a)

      Ethanol, 200 proof, anhydrous, ≥99.5 % (Sigma-Aldrich, 459836).

    2. (b)

      Ethyl alcohol, denatured (Fisher Scientific, A407).

    3. (c)

      Acetone, laboratory reagent, ≥99.5 % (Sigma-Aldrich, 179973).

    4. (d)

      Methanol, anhydrous (Sigma-Aldrich, 322415).

    5. (e)

      Ethyl alcohol, denatured laboratory grade, 95 % (Scholar Chemistry, 9506406).

  5. 5.

    125 mL Erlenmeyer flask.

  6. 6.

    Whatman ashless, grade 42 filter paper, 125 mm diameter (Sigma-Aldrich, Z241113).

  7. 7.

    Powder funnel, polypropylene, 100 mm diameter (Ward Scientific, 6187107).

  8. 8.

    Hot plate.

  9. 9.

    Storage container, 1 oz clear round wide mouth jars (Uline, S-14487).

The common manufacturers for making EuD4TEA described in this chapter are listed . It should be noted that other manufacturers could be used as long as the purity is similar. The user must be careful, however, when using solvents. While most solvents are similar between manufacturers, denatured ethyl alcohol varies greatly. For example, using the Fisher brand denatured ethyl alcohol will yield similar results to the pure ethyl alcohol, acetone, and methanol. However, the Scholar Chemistry version will not yield similar results. These variations were observed in both the denatured and denatured anhydrous versions of ethyl alcohol. As a result, it is imperative that one solvent be used throughout the same experimental run in order to do batch comparison.

The steps to synthesize EuD4TEA are as follows:

  1. 1.

    Set the hot plate to a low heat, between 2 and 3, under a vent hood.

  2. 2.

    Transfer 25 mL of the desired solvent to an Erlenmeyer flask.

  3. 3.

    Place the Erlenmeyer flask on the hot plate.

  4. 4.

    Add 4 mmol (1.44 g) of europium nitrate to the solvent.

  5. 5.

    Add 13 mmol (2.93 g) of DBM to the solution.

  6. 6.

    Place a funnel on top of the Erlenmeyer flask to prevent solvent loss by evaporation.

  7. 7.

    Mix the slurry over a hot plate until completely dissolved.

  8. 8.

    Remove from the hot plate.

  9. 9.

    Add 14 mmol (2 mL) of TEA to the solution.

  10. 10.

    Place a paper towel over the Erlenmeyer flask to ensure that nothing is added while crystallizing.

  11. 11.

    Set aside to cool overnight.

  12. 12.

    Once precipitation is complete, fold the filter paper in half twice.

  13. 13.

    Make a funnel out of the filter paper and place it inside a funnel.

  14. 14.

    Swirl the solution inside the Erlenmeyer flask so that the crystals break free from the Erlenmeyer flask.

  15. 15.

    Pour the solution into the funnel.

  16. 16.

    Let the solution pass through the paper so that only the crystals remain.

  17. 17.

    Repeat steps 12–14 until all the crystals have been transferred to the beaker into the filter paper.

  18. 18.

    Let dry for a few days.

  19. 19.

    Once dry, transfer to a container for storage.

Dopants can enhance the luminescence of many compounds. Depending on the type of dopant, a new synthesis procedure is required. For compound dopants such as caffeine or DMMP, the synthesis method is modified slightly. Step five above is replaced with add the required amount of dopant. The rest of the synthesis process remains unchanged. If the results from the added dopant does not take the shape of a Gaussian curve or the data is scattered, then the solution must be heated. It has been found that in the case of elemental dopants such as dysprosium, samarium, or uranium requires heating. The steps to synthesize EuD4TEA doped with elements are as follows:

  1. 1.

    Set the hot plate to 250 °C under a vent hood.

  2. 2.

    Set the stirrer to maximum.

  3. 3.

    Add 75 mL of the desired solvent to the Erlenmeyer flask.

  4. 4.

    Place the Erlenmeyer flask on the hot plate.

  5. 5.

    Add 4 mmol (1.44 g) of europium nitrate to the solution.

  6. 6.

    Add the desired amount of dopant.

  7. 7.

    Add 13 mmol (2.93 g) of DBM to the solution.

  8. 8.

    Place a funnel upside down on top of the Erlenmeyer flask to ensure that most of the solvent does not evaporate completely.

  9. 9.

    Let mix for 20 min.

  10. 10.

    Remove from the hot plate.

  11. 11.

    Remove the stirrer.

  12. 12.

    Add 14 mmol (2 mL) of TEA to the solution.

  13. 13.

    Place a paper towel over the many Erlenmeyer flask to ensure that nothing is added while crystallizing.

  14. 14.

    Set aside to cool overnight.

  15. 15.

    Once precipitation is complete, fold the filter paper in half twice.

  16. 16.

    Make a funnel out of the filter paper and place it inside a funnel.

  17. 17.

    Swirl the solution inside the Erlenmeyer flask so that the crystals break free from the Erlenmeyer flask.

  18. 18.

    Pour the solution into the funnel.

  19. 19.

    Let the solution pass through the paper so that only the crystals remain.

  20. 20.

    Repeat steps 12–14 until all the crystals have been transferred to the Erlenmeyer flask into the filter paper.

  21. 21.

    Let dry for a few days.

  22. 22.

    Once dry, transfer to a many container for storage.

Appendix 2: Directions for Drop Tower

The directions on how to perform the drop tower test are as follows:

  1. 1.

    Get a new Plexiglas.

  2. 2.

    Set the Photodiode 2.25 cm away from the bottom of the Plexiglas.

  3. 3.

    Set the Amplifier to the appropriate settings (200 μA for ZnS:Mn and EuD4TEA).

  4. 4.

    Place 1.068 ± 0.005 g of material in the center of the drop tower.

  5. 5.

    Place the pin and ball 42 in. from the sample.

  6. 6.

    Set the oscilloscope to the required settings.

    1. (a)

      Channel 1: 2.00 V (varies between materials).

    2. (b)

      M Time Scale = 500 μs (EuD4TEA), 250 μs (ZnS:Mn).

    3. (c)

      Center Position M = 780 μs.

    4. (d)

      CH 1 trigger ʃ = 80 mV

    5. (e)

      Probe attenuation = 20×

  7. 7.

    Release the ball (130.276 g).

  8. 8.

    Save the light duration and repeat until you have five good data sets.

  9. 9.

    Clean out the drop tower and place the powder and Plexiglas into a storage bag making the date, material, and number of drops.

  10. 10.

    Copy the data to the computer.

  11. 11.

    Run the Area under curves2 LabVIEW program to determine the light yield.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fontenot, R.S., Bhat, K.N., Hollerman, W.A., Aggarwal, M.D. (2016). Europium Tetrakis Dibenzoylmethide Triethylammonium: Synthesis, Additives, and Applications. In: Olawale, D., Okoli, O., Fontenot, R., Hollerman, W. (eds) Triboluminescence. Springer, Cham. https://doi.org/10.1007/978-3-319-38842-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-38842-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-38841-0

  • Online ISBN: 978-3-319-38842-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics