Skip to main content

Luminescence of Triboplasma: Origin, Features, and Behavior

  • Chapter
  • First Online:

Abstract

Triboplasma is a special type of electric gas discharge that occurs at a tribological interface or fractured surfaces. Dissipation of mechanical energy through triboplasma leads to a cascade of excitation–deexcitation processes some of which produce luminescence and charged particles emission. Triboluminescence related with triboplasma includes primary luminescence from excited gas molecules and ions and secondary luminescence from solid surfaces exposed to triboplasma. The dependence of spectral characteristics and behavior of triboplasma and triboluminescence on surrounding gas, surface coating and type of rubbed material are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Walton, A. J. (1977). Triboluminescence. Advances in Physics, 26, 887–948.

    Article  Google Scholar 

  2. Sweeting, L. M. (2001). Triboluminescence with and without air. Chemistry of Materials, 13, 854–870.

    Article  Google Scholar 

  3. Abramova, K. B., Vettegren’, V. I., Shcherbakov, I. P., Rakhimov, S. S., & Svetlov, V. N. (1999). Mechanoluminescence and submicrorelief of a copper surface. Technical Physics, 44, 1491–1493.

    Article  Google Scholar 

  4. Banishev, A. F., Panchenko, V. Y., & Shishkov, A. V. (2003). Nonthermal glow of thin metal plates and films exposed to Pulsed Laser Radiation. Technical Physics, 48, 612–615.

    Article  Google Scholar 

  5. Tsuboi, Y., Seto, T., & Kitamura, N. (2008). Laser-induced shock wave can spark triboluminescence of amorphous sugars. The Journal of Physical Chemistry A, 112, 6517–6521.

    Article  Google Scholar 

  6. Abramova, K. B., Semenov, A. A., & Shcherbakov, I. P. (2001). Dynamics of photon emission due to strains in metals. Technical Physics, 46, 1396–1400.

    Article  Google Scholar 

  7. Abramova, K. B., Vettegren’, V. I., Shcherbakov, I. P., & Svetlov, V. N. (2002). The emission of photons and the dynamics of submicrodefects on the surface of noble metals. Technical Physics, 47, 268–271.

    Article  Google Scholar 

  8. Bhat, K., Fontenot, R., Surabhi, R., Hollerman, W., Aggarwal, M., & Alapati, T. (2014). Measurement of the triboluminescent properties for europium and samarium tetrakis dibenzoylmethide triethylammonium. Electronic Materials Letters, 10, 1149–1153.

    Article  Google Scholar 

  9. Chandra, B. P. (1998). Mechanoluminescence. In D. R. Vij (Ed.), Luminescence of solids. New York: Springer.

    Google Scholar 

  10. Zhang, J.-C., Long, Y.-Z., Wang, X., & Xu, C.-N. (2014). Controlling elastico-mechanoluminescence in diphase (Ba, Ca)TiO3:Pr3+ by co-doping different rare earth ions. RSC Advances, 4, 40665–40675.

    Article  Google Scholar 

  11. Heinicke, G. (1984). Tribochemistry. Munchen: Carl Hanser Verlag.

    Google Scholar 

  12. Nakayama, K., & Nevshupa, R. A. (2002). Plasma generation in a gap around a sliding contact. Journal of Physics D: Applied Physics, 35, L53–L56.

    Article  Google Scholar 

  13. Takacs, L. (2013). The historical development of mechanochemistry. Chemical Society Reviews, 42, 7649–7659.

    Article  Google Scholar 

  14. Urakaev, F. (2007). Mechanodestruction of minerals at the crack tip. Overview: 1. Experiment. Physics and Chemistry of Minerals, 34, 351–361.

    Article  Google Scholar 

  15. Weiser, H. B. (1917). Crystalloluminescence II. The Journal of Physical Chemistry, 22, 576–595.

    Article  Google Scholar 

  16. Rusanov, A. I. (2002). Thermal effects in mechanochemistry. Russian Journal of General Chemistry, 72, 327–344.

    Article  Google Scholar 

  17. Butyagin, P. Y. (1971). Kinetics and nature of mechanochemical reactions. Russian Chemical Reviews, 40, 901–915.

    Article  Google Scholar 

  18. Craig, S. L. (2012). Mechanochemistry: A tour of force. Nature, 487, 176–177.

    Article  Google Scholar 

  19. Fischer, T. E. (1988). Tribochemistry. Annual Review of Materials Science, 18, 303–323.

    Article  Google Scholar 

  20. Nevshupa, R. A. (2004). Triboemission: an attempt of generalized classification. In C. Kajdas (Ed.), Tribology: Science and applications. Vienna: PAS.

    Google Scholar 

  21. Varentsov, E. A., & Khrustalev, Y. A. (1995). Mechanoemission and mechanochemistry of molecular organic crystals. Russian Chemical Reviews, 64, 783–797.

    Article  Google Scholar 

  22. Nakayama, K., & Nevshupa, R. A. (2003). Characteristics and pattern of plasma generated at sliding contact. Journal of Tribology-Transactions of the ASME, 125, 780–787.

    Article  Google Scholar 

  23. Longchambon, H. (1925). Etude spectro-photographique des phénomènes de triboluminescence et de cristalloluminescence. Bulletin de la Societe Francaise de Mineralogie et de Cristallographie, 48, 130–214.

    Google Scholar 

  24. Sweeting, L. M., Cashel, M. L., Dott, M., Gingerich, J. M., Guido, J. L., Kling, J. A., et al. (1992). Spectroscopy and mechanism in triboluminescence. Molecular Crystals and Liquid Crystals Science and Technology: Section A. Molecular Crystals and Liquid Crystals, 211, 389–396.

    Article  Google Scholar 

  25. Butyagin, P. Y. (1970). The luminescence accompanying mechanical deformation and rupture of polymers. Polymer Science (Visokomoleculiarnie Soedinenia), A12, 290–299.

    Google Scholar 

  26. Kricka, L. J., Stroebel, J., & Stanley, P. E. (1999). Triboluminescence: 1968–1998. Luminescence, 14, 215–220.

    Article  Google Scholar 

  27. Orel, V. E., Kadyuk, I. N., Dzyatkovskaya, N. N., Danko, M. I., & Mel’nic, Y. I. (2000). Mechanoluminescence: Lymphocyte analysis after exposure to ionizing radiation. Luminescence, 15, 29–36.

    Article  Google Scholar 

  28. Sweeting, L. M., Cashel, M. L., & Rosenblatt, M. M. (1992). Triboluminescence spectra of organic crystals are sensitive to conditions of acquisition. Journal of Luminescence, 52, 281–291.

    Article  Google Scholar 

  29. Miura, T., Chini, M., & Bennewitz, R. (2007). Forces, charges, and light emission during the rupture of adhesive contacts. Journal of Applied Physics, 102, 103509. 6 pages.

    Article  Google Scholar 

  30. Gu, Z., Wei, W., Su, J., & Yu, C. W. (2013). The role of water content in triboelectric charging of wind-blown sand. Scientific Reports, 3, 1337.

    Google Scholar 

  31. Nevshupa, R. (2009). The role of athermal mechanisms in the activation of tribodesorption and triboluminisence in miniature and lightly loaded friction units. Journal of Friction and Wear, 30, 118–126.

    Article  Google Scholar 

  32. Nevshupa, R. A., Roman, E., & DE Segovia, J. L. (2010). Model of the effect of local frictional heating on the tribodesorbed gases from metals in ultra-high vacuum. International Journal of Materials and Product Technology, 38, 57–65.

    Article  Google Scholar 

  33. Miura, T., Hosobuchi, E., & Arakawa, I. (2009). Spectroscopic studies of triboluminescence from a sliding contact between diamond, SiO2, MgO, NaCl, and Al2O3 (0001). Vacuum, 84, 573–577.

    Article  Google Scholar 

  34. Miura, T., & Nakayama, K. (2001). Two-dimensional spatial distribution of electric-discharge plasma around a frictional interface between dielectric surfaces. Applied Physics Letters, 78, 2979–2981.

    Article  Google Scholar 

  35. Muto, J., Nagahama, H., Miura, T., & Arakawa, I. (2007). Frictional discharge at fault asperities: Origin of fractal seismo-electromagnetic radiation. Tectonophysics, 431, 113–122.

    Article  Google Scholar 

  36. Muto, J., Nagahama, H., Miura, T., & Arakawa, I. (2008). Frictional discharge plasma and seismo-electromagnetic phenomena. Physics of the Earth and Planetary Interiors, 168, 1–5.

    Article  Google Scholar 

  37. Nakayama, K. (2010). Microplasma generation in gap of sliding contact through discharging of ambient gas due to triboelectrification. International Journal of Plasma Environmental Science & Technology, 4, 148–153.

    Google Scholar 

  38. Nakayama, K., & Nevshupa, R. A. (2004). Effect of dry air pressure on characteristics and patterns of tribomicroplasma. Vacuum, 74, 11–17.

    Article  Google Scholar 

  39. Nevshupa, R. (2013). Effect of gas pressure on the triboluminescence and contact electrification under mutual sliding of insulating materials. Journal of Physics D: Applied Physics, 46, 185501.

    Article  Google Scholar 

  40. Raizer, Y. P. (1991). Gas discharge physics. New York: Springer.

    Book  Google Scholar 

  41. Miura, T., & Nakayama, K. (2000). Spectral analysis of photons emitted during scratching of an insulator surface by a diamond in air. Journal of Applied Physics, 88, 5444–5447.

    Article  Google Scholar 

  42. Kaufman, V., & Edlén, B. (1974). Reference wavelengths from atomic spectra in the range 15 Å to 25000 Å. Journal of Physical and Chemical Reference Data, 3, 825–895.

    Article  Google Scholar 

  43. Nakayama, K. (2010). Triboplasma generation and triboluminescence: Influence of stationary sliding partner. Tribology Letters, 37, 215–228.

    Article  Google Scholar 

  44. Nevshupa, R., & Hiratsuka, K. (2015). Triboluminescence. In E. Gnecco & E. Meyer (Eds.), Fundamentals of friction and wear on the nanoscale. New York: Springer.

    Google Scholar 

  45. Nakayama, K., & Nevshupa, R. (2002). Pattern and spectral characteristics of microtriboplasma. In JAST Tribology Conference, Tokyo (pp. 1–2). Tokyo: JAST.

    Google Scholar 

  46. Tohmon, R., Shimogaichi, Y., Munekuni, S., Ohki, Y., Hama, Y., & Nagasawa, K. (1989). Relation between the 1.9 eV luminescence and 4.8 eV absorption bands in high‐purity silica glass. Applied Physics Letters, 54, 1650–1652.

    Article  Google Scholar 

  47. Nevshupa, R. A., & Nakayama, K. (2003). Triboemission behavior of photons at dielectric/dielectric sliding: Time dependence nature at 10−4–104 s. Journal of Applied Physics, 93, 9321–9328.

    Article  Google Scholar 

  48. Biagi, S. F. (2012). Momentum transfer cross-section Biagi-v8.9. Plasma Data Exchange Project.

    Google Scholar 

  49. Harper, W. R. (1967). Contact and frictional electrification. Oxford: Clarendon.

    Google Scholar 

  50. Ireland, P. M. (2008). The role of changing contact in sliding triboelectrification. Journal of Physics D: Applied Physics, 41, 025305.

    Article  Google Scholar 

  51. Kluev, V. A., Vladikina, T. N., Toporov, Y. P., Anisimova, V. J., & Derjaguin, B. V. (1978). Emission phenomena accompanying the triboelectrification process in vacuum. IEEE Transactions on Industry Applications, IA-14, 544–546.

    Article  Google Scholar 

  52. Kornfeld, M. I. (1976). Frictional electrification. Journal of Physics D: Applied Physics, 9, 1183–1192.

    Article  Google Scholar 

  53. Bach, H., & Neuroth, N. (1995). The properties of optical glass. New York: Springer.

    Google Scholar 

  54. Labadz, A. F., & Lowell, J. (1991). Contact charge density and penetration depth. Journal of Electrostatics, 26, 251–260.

    Article  Google Scholar 

  55. Gouveia, R. F., & Galembeck, F. (2009). Electrostatic charging of hydrophilic particles due to water adsorption. Journal of the American Chemical Society, 131, 11381–11386.

    Article  Google Scholar 

  56. Muto, J., Nagahama, H., Miura, T., & Arakawa, I. (2006). Frictional discharge plasma from natural semiconductor/insulator junctions: Origin of seismo-electromagnetic radiation. Physics and Chemistry of the Earth, Parts A/B/C, 31, 346–351.

    Article  Google Scholar 

  57. Samsonenko, S., Samsonenko, N., & Timchenko, V. (2010). Dislocation electrical conductivity of plastically deformed natural diamonds. Semiconductors, 44, 1140–1144.

    Article  Google Scholar 

  58. Blaise, G. (2001). Charge localization and transport in disordered dielectric materials. Journal of Electrostatics, 50, 69–89.

    Article  Google Scholar 

  59. Mclellan, G. W., & Shand, E. B. (1984). Glass engineering handbook. New York: McGraw-Hill.

    Google Scholar 

  60. LE Rouzic, J., & Reddyhoff, T. (2014). Spatially resolved triboemission measurements. Tribology Letters, 55, 245–252.

    Article  Google Scholar 

  61. Molina, G. J., Furey, M. J., Ritter, A. L., & Kajdas, C. (2001). Triboemission from alumina, single crystal sapphire, and aluminum. Wear, 249, 214–219.

    Article  Google Scholar 

  62. Molina, G. J. (2000). Triboemission from ceramics: Charge intensity and energy distribution characterizations. Ph.D. Thesis, Virginia Polytechnic Institute and State University.

    Google Scholar 

  63. Loeb, L. B. (1965). Electrical coronas, their basic physical mechanisms. Berkley: University of California Press.

    Google Scholar 

  64. Sigmond, R. S. (1997). The oscillations of the positive glow corona. Le Journal de Physique IV, 7, 383–395.

    Google Scholar 

  65. Baytekin, H. T., Patashinski, A. Z., Branicki, M., Baytekin, B., Soh, S., & Grzybowski, B. A. (2011). The mosaic of surface charge in contact electrification. Science, 333, 308–312.

    Article  Google Scholar 

  66. Lacks, D. J., & Sankaran, R. M. (2011). Contact electrification of insulating materials. Journal of Physics D: Applied Physics, 44, 453001.

    Article  Google Scholar 

  67. Williams, M. W. (2012). Triboelectric charging of insulating polymers—some new perspectives. Aip Advances, 2, 010701 (p. 9).

    Google Scholar 

  68. Beutel, J. (1971). Chemiluminescence in oxidation reactions. Oxidation mechanism of dimedone. Journal of the American Chemical Society, 93, 2615–2621.

    Article  Google Scholar 

  69. Hiratsuka, K. I., & Hosotani, K. (2012). Effects of friction type and humidity on triboelectrification and triboluminescence among eight kinds of polymers. Tribology International, 55, 87–99.

    Article  Google Scholar 

  70. Hosotani, K., & Hiratsuka, K. (2008). Triboluminescence in the rubbing of some polymers. In JAST Tribology Conference 2008–9, Nagoya. JAST (pp. 527–528).

    Google Scholar 

  71. Hiratsuka, K., & Yoshida, T. (2011). The twin-ring tribometer—Characterizing sliding wear of metals excluding the effect of contact configurations. Wear, 270, 742–750.

    Article  Google Scholar 

  72. Blakey, I., & George, G. A. (2001). Simultaneous FTIR emission spectroscopy and chemiluminescence of oxidizing polypropylene: Evidence for alternate chemiluminescence mechanisms. Macromolecules, 34, 1873–1880.

    Article  Google Scholar 

  73. Nevshupa, R. A., & Nakayama, K. (2002). Effect of nanometer thin metal film on triboemission of negatively charged particles from dielectric solids. Vacuum, 67, 485–490.

    Article  Google Scholar 

  74. Nakayama, K. (2007). The plasma generated and photons emitted in an oil-lubricated sliding contact. Journal of Physics D: Applied Physics, 40, 1103–1107.

    Article  Google Scholar 

  75. Nakayama, K. (2011). Mechanism of triboplasma generation in oil. Tribology Letters, 41, 345–351.

    Article  Google Scholar 

  76. Nakayama, K., & Nguyen, S. (2000). Triboelectromagnetic phenomena in a diamond/hydrogenated-carbon-film tribosystem under perfluoropolyether fluid lubrication. Applied Surface Science, 158, 229–235.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Nevshupa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nevshupa, R., Hiratsuka, K. (2016). Luminescence of Triboplasma: Origin, Features, and Behavior. In: Olawale, D., Okoli, O., Fontenot, R., Hollerman, W. (eds) Triboluminescence. Springer, Cham. https://doi.org/10.1007/978-3-319-38842-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-38842-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-38841-0

  • Online ISBN: 978-3-319-38842-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics