Skip to main content

Mechanoluminescence of Coordination Compounds

  • Chapter
  • First Online:
Triboluminescence

Abstract

Mechanoluminescence (ML) involves all luminescence phenomena induced by mechanical action on solids. In this case, a wide varieties of mechanical stimuli, such as compressing, stretching, static loading (pressure-step), pressure pulse, cleaving, rubbing, and grinding, might induce the excitation of solids, yielding luminescence phenomena. The present chapter discusses on mechanoluminescent properties of transition metal and lanthanide coordination compounds. The principal aim of this chapter is to describe the recent facts about the mechanisms of mechanoluminescence and their correlation with structural properties. It will be also presented a concise overview on the latest progress made on the current variety of ML coordination compounds or materials based on transition and lanthanide metals. The recent studies in this area may lead to the development of ML materials for smart optical sensors for real-time damage detections, monitoring civil and military structures, luminescent probes for biological applications, and lightning systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

acac :

Acetylacetonate

acbz:

1,4-Diacetylbenzene

acetbz:

1,4-Diacetoxybenzene

APY:

4-Aminopyridinium

bipy:

2,2′-Bipyridine

BIPYPO:

3,3′-Bis(diphenylphosphoryl)-2,2′-bipyridine

BL:

Bioluminescence

CL:

Chemiluminescence

dbm :

Dibenzoylmethanate

dia:

4,5-Diazafluoren-9-one

dmbp:

4,4′-Dimethyl-2,2′-bipyridinate

dmdpy:

4,4′-Dimethyl-2,2′-bipyridyl ligand

DMPY:

1,4-Dimethylpyridinium

dmtph:

1,4-Dimethyltherephthalate

DPEPO:

Bis[2-(diphenylphosphino)phenyl]ether oxide

dpm:

Pivaloylmethanate

EL:

Electroluminescence

FL:

Fractoluminescence

hfac :

Hexafluoroacetoacetonate

hmpa:

Hexamethylphosphoramide

EuD4TEA:

HNEt3[Eu(dbm)4]

HPPI:

3-Phenyl-4-propanoyl-5-isoxazone

LEDs:

Lighting-emitting devices

LMCT:

Ligand-to-metal charge transfer states

Ln3+ :

Trivalent lanthanide ions

LRR :

(−)-4,5-Pinene bipyridine

LSS :

(+)-4,5-Pinene bipyridine

ML:

Mechanoluminescence

MLCT:

Metal-to-ligand charge transfer

MLQ:

N-Methylisoquinolium

MOFs:

Metal-organic frameworks

N2 :

Nitrogen

NO3 :

Nitrate ion

PD:

Photodiode

phen:

1,10-Phenantroline

PL:

Photoluminescence

PyO:

Pyridine N-oxide

PZL:

Piezoluminescence

S:

Singlet state

T:

Triplet state

TL:

Triboluminescence

tppo:

Triphenylphosphine oxide

tta :

Thenoyltrifluoroacetonate

References

  1. Harvey, E. N. (1957). A history of luminescence: From the earliest times until 1900. Philadelphia: American Philosophical Society.

    Google Scholar 

  2. Atkins, P., & Friedman, R. (2005). Molecular quantum mechanics (4th ed.). New York: Oxford University Press.

    Google Scholar 

  3. Blasse, G., & Grabmaier, B. C. (1994). Luminescent materials. Heidelberg: Spriger-Verlag.

    Book  Google Scholar 

  4. Bünzli, J.-C. G., & Choppin, G. R. (Eds.). (1989). Lanthanide probes in life, chemical and earth sciences: Theory and practice. Amsterdam: Elsevier.

    Google Scholar 

  5. Hemmilä, I., Dakubu, S., Mukkala, V. M., Siitari, H., & Lövgren, T. (1984). Europium as a label in time-resolved immunofluorometric assays. Analytical Biochemistry, 137(2), 335–343.

    Article  Google Scholar 

  6. Binnemans, K. (2009). Lanthanide-based luminescent hybrid materials. Chemical Reviews, 109(9), 4283–4374.

    Article  Google Scholar 

  7. Bünzli, J.-C. G., & Eliseeva, S. V. (2011). Lanthanide luminescence: Photophysical, analytical and biological aspects (Springer series on fluorescence). Heidelberg: Spriger-Verlag.

    Google Scholar 

  8. Bechara, E. J. H., & Viviani, V. R. (2015). Living light in the darkness: Facts and stories. Revista Virtual de Quimica, 7(1), 3–40.

    Google Scholar 

  9. Jha, P., & Chandra, B. P. (2014). Survey of the literature on mechanoluminescence from 1605 to 2013. Luminescence: The Journal of Biological and Chemical Luminescence, 29(8), 977–993.

    Article  Google Scholar 

  10. Lima, P. P., Paz, F. A. A., Brites, C. D. S., Quirino, W. G., Legnani, C., Costa e Silva, M., et al. (2014). White OLED based on a temperature sensitive Eu3+/Tb3+ β-diketonate complex. Organic Electronics, 15(3), 798–808.

    Article  Google Scholar 

  11. Oliveira, A. G., Stevani, C. V., Waldenmaier, H. E., Viviani, V., Emerson, J. M., Loros, J. J., et al. (2015). Circadian control sheds light on fungal bioluminescence. Current Biology, 25(7), 964–968.

    Article  Google Scholar 

  12. Sage, I., & Bourhill, G. (2001). Triboluminescent materials for structural damage monitoring. Journal of Materials Chemistry, 11(2), 231–245.

    Article  Google Scholar 

  13. Xu, C. N., Li, C., Imai, Y., Yamada, H., Adachi, Y., & Nishikubo, K. (2006). Development of elastico-luminescent nanoparticles and their applications. Advances in Science and Technology, 45, 939–944.

    Article  Google Scholar 

  14. Wang, W. X., Matsubara, T., Takao, Y., Imai, Y., & Xu, C. N. (2011). A new smart damage sensor using mechanoluminescence material. Materials Science Forum, 675–677, 1081–1084.

    Article  Google Scholar 

  15. Zhenyi, M., Jiawen, F., & Dickinson, J. T. (1988). Properties of the photon emission accompanying the peeling of a pressure-sensitive adhesive. Journal of Adhesion, 25(1), 63–77.

    Article  Google Scholar 

  16. Camara, C. G., Escobar, J. V., Hird, J. R., & Putterman, S. J. (2008). Correlation between nanosecond X-ray flashes and stick–slip friction in peeling tape. Nature, 455(7216), 1089–1092.

    Article  Google Scholar 

  17. Lee, S., Jensen, L. C., Langford, S. C., & Dickinson, J. T. (1995). Electrical transients generated by the peel of a pressure sensitive adhesive tape from a copper substrate. Journal of Adhesion Science and Technology, 9(1), 1–26.

    Article  Google Scholar 

  18. Zhang, H., Terasaki, N., Yamada, H., & Xu, C.-N. (2009). Development of mechanoluminescent micro-particles Ca2MgSi2O7:Eu, Dy and their application in sensors. Thin Solid Films, 518(2), 610–613.

    Article  Google Scholar 

  19. Bacon, F. (1605). The advancement of learning. Oxford: CreateSpace Independent Publishing.

    Google Scholar 

  20. Longchambon, H. (1922). Study of the spectrum of the light emitted in the triboluminescence of sugar. Journal of the Franklin Institute, 195, 269–270.

    Google Scholar 

  21. Reynolds, G. T. (1997). Piezoluminescence from a ferroelectric polymer and quartz. Journal of Luminescence, 75(4), 295–299.

    Article  Google Scholar 

  22. Hagan, A. K., & Zuchner, T. (1982). Lanthanide-based time-resolved luminescence immunoassays.Analytical and Bioanalytical Chemistry, 400(9), 2847–2864.

    Google Scholar 

  23. Sweeting, L. M., & Guido, J. L. (1985). An improved method for determining triboluminescence spectra. Journal of Luminescence, 33, 167–173.

    Article  Google Scholar 

  24. Longchambon, H. (1925). Research experiments on the phenomenons of triboluminescence and of crystalloluminescence. Bulletin de la Société française de minéralogie, 48, 130–214.

    Google Scholar 

  25. Sodomka, L. (1971). Triboluminescence of silicon carbide and other uncommon materials. Physica Status Solidi A, 7, K65–K66.

    Article  Google Scholar 

  26. Meyer, K., & Polly, F. (1965). Zum Mechanismus der tribolumineszenz in alkalihalogeniden. Berichte der Bunsengesellschaft für Physikalische Chemie, 69, 244.

    Article  Google Scholar 

  27. Meyer, K., Obrikat, D., & Rossberg, M. (1970). Progress in triboluminescence of alkaline halides and doped zinc sulphides (II). Kristall und Technik, 5, 181.

    Article  Google Scholar 

  28. Nowak, R., Krajewska, A., & Samoc, M. (1983). Efficient triboluminescence in N-isopropylcarbazole. Chemical Physics Letters, 94(3), 270–271.

    Article  Google Scholar 

  29. Chandra, B. P., & Zink, J. I. (1980). Triboluminescence and the dynamics of crystal fracture. Physical Review B, 21(2), 816–826.

    Article  Google Scholar 

  30. Chandra, B. P. (1995). Preparation and characterization of gold doped (Zn, Cd)S mixed phosphors for mechano-optical transducers. Bulletin of Materials Science, 18(5), 503–515.

    Article  Google Scholar 

  31. Wick, F. G. (1940). Triboluminescence of sugar. Journal of the Optical Society of America A, 30, 302.

    Article  Google Scholar 

  32. Tabushi, I., Yamamura, K., & Nishiya, T. (1979). Pulsed infrared laser induced visible luminescence. Journal of the American Chemical Society, 101(10), 2787–2788.

    Article  Google Scholar 

  33. Angelos, R. A., Zink, J. I., & Hardy, G. E. (1979). Triboluminescence spectroscopy of common candies. Journal of Chemical Education, 56, 413.

    Article  Google Scholar 

  34. Zink, J. I. (1975). Triboluminescence of uranyl nitrate. Inorganic Chemistry, 14(3), 555–558.

    Article  Google Scholar 

  35. Fontenot, R. S., Hollerman, W. A., Aggarwal, M. D., Bhat, K. N., & Goedeke, S. M. (2012). A versatile low-cost laboratory apparatus for testing triboluminescent materials. Measurement, 45(3), 431–436.

    Article  Google Scholar 

  36. Fontenot, R. S., Hollerman, W. A., Bhat, K. N., & Aggarwal, M. D. (2012). Comparison of the triboluminescent properties for europium tetrakis and ZnS:Mn powders. Journal of Theoretical and Applied Physics, 6(1), 1–9.

    Article  Google Scholar 

  37. Cotton, F. A., Goodgame, D. M. L., & Goodgame, M. (1962). Absorption spectra and electronic structures of some tetrahedral manganese(II) complexes. Journal of the American Chemical Society, 84, 167–172.

    Article  Google Scholar 

  38. Goodgame, D. M. L., & Cotton, F. A. (1961) Phosphine oxide complexes. Part IV. Tetrahedral, planar, and binuclearcomplexes of copper(II) with phosphine oxide, and some arsine oxide analogues. Journal of the Chemical Society 2298–2305.

    Google Scholar 

  39. Cotton, F. A., Daniels, L. M., & Huang, P. (2001). Correlation of structure and triboluminescence for tetrahedral manganese(II) compounds. Inorganic Chemistry, 40(14), 3576–3578.

    Article  Google Scholar 

  40. Bulgakov, R. G., Kuleshov, S. P., Zuzlov, A. N., & Vafin, R. R. (2004). Triboluminescence of lanthanide acetylacetonates. Russian Chemical Bulletin, 53(12), 2712–2714.

    Article  Google Scholar 

  41. Rheingold, A. L., & King, W. (1989). Crysta structures of three brilliantly triboluminescent centrosymmetric lanthanide complexes: Piperidinium Tetrakis(benzoylacetonato)europate, Hexakis(antipyrine)terbium triiodide, and Hexaaquadichloroterbium chloride. Inorganic Chemistry, 28(9), 1715–1719.

    Article  Google Scholar 

  42. Takada, N., Sugiyama, J., Katoh, R., Minami, N., & Hieda, S. (1997). Mechanoluminescent properties of europium complexes. Synthetic Metals, 91(1–3), 351–354.

    Article  Google Scholar 

  43. Olawale, D. O., Dickens, T., Sullivan, W. G., Okoli, O. I., Sobanjo, J. O., & Wang, B. (2011). Progress in triboluminescence-based smart optical sensor system. Journal of Luminescence, 131(7), 1407–1418.

    Article  Google Scholar 

  44. Cotton, A. F., Daniels, L. M., & Huang, P. (2001). Refutation of an alleged example of a disordered but centrosymmetric triboluminescent crystal. Inorganic Chemistry Communications, 4(6), 319–321.

    Article  Google Scholar 

  45. Cotton, F. A., & Huang, P. (2003). Further observations on the non-rigorous relationship between triboluminescence and crystal centricity. Inorganica Chimica Acta, 346, 223–226.

    Article  Google Scholar 

  46. Sweeting, L. M., & Rheingoldf, A. L. (1987). Crystal disorder and triboluminescence: Triethylammonium Tetrakis(dibenzoy1methanato)europate. Journal of the American Chemical Society, 109(9), 2652–2658.

    Article  Google Scholar 

  47. Bourhill, G., Palsson, L. O., Samuel, I. D. W., Sage, I. C., Oswald, I. D. H., & Duignan, J. P. (2001). The solid-state photoluminescent quantum yield of triboluminescent materials. Chemical Physics Letters, 336, 234–241.

    Article  Google Scholar 

  48. Heffern, M. C., Matosziuk, L. M., & Meade, T. J. (2014). Lanthanide probes for bioresponsive imaging. Chemical Reviews, 114(8), 4496–4539.

    Article  Google Scholar 

  49. Brito, H. F., Malta, O. L., Felinto, M. C. F. C., & Teotonio, E. E. S. (2009). Luminescence phenomena involving metal enolates. Chichester, UK: John Wiley & Sons.

    Google Scholar 

  50. Bünzli, J.-C. G. (2015). On the design of highly luminescent lanthanide complexes. Coordination Chemistry Reviews, 293–294, 19–47.

    Article  Google Scholar 

  51. Binnemans, K. (2015). Interpretation of europium(III) spectra. Coordination Chemistry Reviews, 295, 1–45.

    Article  Google Scholar 

  52. Wang, Z., Ananias, D., Carné-Sánchez, A., Brites, C. D. S., Imaz, I., Maspoch, D., et al. (2015). Lanthanide-organic framework nanothermometers prepared by spray-drying. Advanced Functional Materials, 25(19), 2824–2830.

    Article  Google Scholar 

  53. Bünzli, J.-C. G., & Piguet, C. (2005). Taking advantage of luminescent lanthanide ions. Chemical Society Reviews, 34(12), 1048.

    Article  Google Scholar 

  54. Sabbatini, N., Guardigli, M., & Lehn, J.-M. (1993). Luminescent lanthanide complexes as photochemical supramolecular devices. Coordination Chemistry Reviews, 123(1–2), 201–228.

    Article  Google Scholar 

  55. de Sá, G. F., Malta, O. L., de Mello Donegá, C., Simas, A. M., Longo, R. L., & da Silva Jr, E. F. (2000). Spectroscopic properties and design of highly luminescent lanthanide coordination complexes. Coordination Chemistry Reviews, 196, 165–195.

    Article  Google Scholar 

  56. Hurt, C., McAvoy, N., Bjorklund, S., & Filipescu, N. (1966). High intensity triboluminescence in europium tetrakis (Dibenzoylmethide)–triethylammonium. Nature, 212, 179–180.

    Article  Google Scholar 

  57. Teotonio, E. E. S., Fett, G. M., Brito, H. F., Faustino, W. M., de Sá, G. F., Felinto, M. C. F. C., et al. (2008). Evaluation of intramolecular energy transfer process in the lanthanide(III) bis- and tris-(TTA) complexes: Photoluminescent and triboluminescent behavior. Journal of Luminescence, 128(2), 190–198.

    Article  Google Scholar 

  58. Miranda, Y. C., Pereira, L. L. A. L., Barbosa, J. H. P., Brito, H. F., Felinto, M. C. F. C., Malta, O. L., et al. (2015). The role of the ligand-to-metal charge-transfer state in the dipivaloylmethanate-lanthanide intramolecular energy transfer process. European Journal of Inorganic Chemistry, 18, 3019–3027.

    Article  Google Scholar 

  59. Hasegawa, Y., Hieda, R., Miyata, K., Nakagawa, T., & Kawai, T. (2011). Brilliant triboluminescence of a lanthanide coordination polymer with low-vibrational-frequency and non-centrosymmetric structural networks. European Journal of Inorganic Chemistry, 32, 4978–4984.

    Article  Google Scholar 

  60. Hüfner, S. (1978). Optical spectra of transparent rare earth compounds. London: Academic Press.

    Google Scholar 

  61. Crosby, G. A., Whan, R. E., & Alire, R. M. (1961). Intramolecular energy transfer in rare earth chelates. Role of the triplet state. Journal of Chemical Physics, 34(3), 743.

    Article  Google Scholar 

  62. Sato, S., & Wada, M. (1970). Relations between intramolecular enegy transfer efficiencies and triplet state enegies in rare earth diketonate chelates. Bulletin of the Chemical Society of Japan, 43(7), 1955–1962.

    Article  Google Scholar 

  63. Dawson, W. R. (1966). Internal-energy-transfer efficiencies in Eu3+ and Tb3+ chelates using excitation to selected ion levels. Journal of Chemical Physics, 45(7), 2410.

    Article  Google Scholar 

  64. Tsaryuk, V., Zolin, V., & Legendziewicz, J. (2003). The structure of ligands and effects of the europium luminescence excitation. Journal of Luminescence, 102–103, 744–750.

    Article  Google Scholar 

  65. Fontenot, R. S., Hollerman, W. A., Bhat, K. N., & Aggarwal, M. D. (2012). Synthesis and characterization of highly triboluminescent doped europium tetrakis compounds. Journal of Luminescence, 132(7), 1812–1818.

    Article  Google Scholar 

  66. Fontenot, R. S., Bhat, K. N., Hollerman, W. A., & Aggarwal, M. D. (2012). Innovative triboluminescence study of multivitamin doped europium tetrakis. Crystal Research and Technology, 578(5), 573–578.

    Article  Google Scholar 

  67. Fontenot, R. S., Hollerman, W. A., Bhat, K. N., & Aggarwal, M. D. (2013). Effects of added uranium on the triboluminescent properties of europium dibenzoylmethide triethylammonium. Journal of Luminescence, 134, 477–482.

    Article  Google Scholar 

  68. Fontenot, R. S., Bhat, K. N., Hollerman, W. A., Alapati, T. R., & Aggarwal, M. D. (2013). Triboluminescent properties of dysprosium doped europium dibenzoylmethide triethylammonium. ECS Journal of Solid State Science and Technology, 2(9), P384–P388.

    Article  Google Scholar 

  69. Fontenot, R. S., Hollerman, W. A., Bhat, K. N., Aggarwal, M. D., & Penn, B. G. (2013). Incorporating strongly triboluminescent europium dibenzoylmethide triethylammonium into simple polymers. Polymer Journal, 46(2), 111–116.

    Article  Google Scholar 

  70. Bhat, K. N., Fontenot, R. S., Surabhi, R., Hollerman, W. A., Aggarwal, M. D., & Alapati, T. R. (2014). Measurement of the triboluminescent properties for europium and samarium tetrakis dibenzoylmethide triethylammonium. Electronic Materials Letters, 10(6), 1149–1153.

    Article  Google Scholar 

  71. Fontenot, R. S., Bhat, K. N., Owens, C. A., Hollerman, W. A., & Aggarwal, M. D. (2015). Effects of added dibutyl phosphate on the luminescent properties of europium tetrakis dibenzoylmethide triethylammonium. Journal of Luminescence, 158, 428–434.

    Article  Google Scholar 

  72. Chen, X., Zhu, X., Xu, Y., Raj, S. S. S., Fun, H., & You, X. (1999). Triboluminescence and crystal structures of non-ionic europium complexes. Journal of Materials Chemistry, 9, 2919–2922.

    Article  Google Scholar 

  73. Takada, N., Hieda, S., Sugiyama, J., Katoh, R., & Minami, N. (2000). Mechanoluminescence from piezoelectric crystals of an europium complex. Synthetic Metals, 111–112, 587–590.

    Article  Google Scholar 

  74. Chen, X., Duan, C., Zhu, X., You, X., Sundara, S. S., Fun, H., et al. (2001). Triboluminescence and crystal structures of europium(III) complexes. Materials Chemistry and Physics, 72, 11–15.

    Article  Google Scholar 

  75. Zheng, Z., Wang, J., Liu, H., Carducci, M. D., Peyghambarian, N., & Jabbourb, G. E. (2001). A triboluminescent europium(III) complex. Acta Crystallographica Section C, 58(1), m50–m52.

    Google Scholar 

  76. Chen, X.-F., Zhu, X.-H., Xu, Y.-H., Raj, S. S. S., Fun, H.-K., Wu, J., et al. (2002). Crystal structure and triboluminescence spectrum of Mu2-(ONC5H5) bridging dinuclear europium(III) complex. Journal of Coordination Chemistry, 55(4), 421–428.

    Article  Google Scholar 

  77. Li, X.-L., Zheng, Y., Zuo, J.-L., Song, Y., & You, X.-Z. (2007). Synthesis, crystal structures and triboluminescence of a pair of Eu(III)-based enantiomers. Polyhedron, 26(18), 5257–5262.

    Article  Google Scholar 

  78. Chen, X.-F., Liu, S., Duan, C., Xu, Y.-H., You, X., Ma, J., et al. (1998). Synthesis, crystal structure and triboluminescence spectrum of 1,4-dimethylpyridinium tetrakis. Polyhedron, 17(97), 1883–1889.

    Article  Google Scholar 

  79. Biju, S., Gopakumar, N., Bunzli, J.-C. G., Scopelliti, R., Kim, H. K., & Reddy, M. L. P. (2013). Brilliant photoluminescence and triboluminescence from ternary complexes of DyIII and TbIII with 3-Phenyl-4-propanoyl-5-isoxazolonate and a bidentate phosphine oxide coligand. Inorganic Chemistry, 52, 8750–8758.

    Article  Google Scholar 

  80. Eliseeva, S. V., Pleshkov, D. N., Lyssenko, K. A., Lepnev, L. S., & Bunzli, J.-C. G. (2010). Highly luminescent and triboluminescent coordination polymers assembled from lanthanide β-diketonates and aromatic bidentate O-donor ligands. Inorganic Chemistry, 3, 9300–9311.

    Article  Google Scholar 

  81. Clegg, W., Bourhill, G., & Sage, I. (2002). Hexakis(antipyrine-O)terbium(III) triiodide at 160 K: Confirmation of a centrosymmetric structure for a brilliantly triboluminescent complex. Acta Crystallographica, 58(4), m159–m161.

    Google Scholar 

  82. Clegg, W., Sage, I., Oswald, I., Peter, B., & Bourhill, G. (2000). Two isostructural triboluminescent lanthanide complexes. Acta Crystallographica, C56, 1323–1325.

    Google Scholar 

  83. Knotter, D. M., van Maanen, H. L., Grove, D. M., Spek, A. L., & van Koten, G. (1991). Synthesis and properties of trimeric ortho-chelated (Arenethiolato)copper(I) complexes. Inorganic Chemistry, 30(17), 3309–3317.

    Article  Google Scholar 

  84. Knotter, D. M., Blasse, G., Vliet, J. P. M., & van Koten, G. (1992). Luminescence of copper(I) arenethiolates and its relation to copper(I) luminescence in other complexes. Inorganic Chemistry, 31(7), 2196–2201.

    Article  Google Scholar 

  85. Chen, J., Zhang, Q., Zheng, F.-K., Liu, Z.-F., Wang, S.-H., Wu, A.-Q., et al. (2015). Intense photo- and tribo-luminescence of three tetrahedral manganese(II) dihalides with chelating bidentate phosphine oxide ligand. Dalton Transactions, 44(7), 3289–3294.

    Article  Google Scholar 

  86. Orive, J., Mesa, J. L., Balda, R., Fernańdez, J., Fernańdez, J. R., Rojo, T., et al. (2011). Enhancement of the luminescent properties of a new red-emitting phosphor, Mn2(HPO3)F2, by Zn substitution. Inorganic Chemistry, 50, 12463–12476.

    Article  Google Scholar 

  87. Lin, J., Zhang, Q., Wang, L., Liu, X., Yan, W., Wu, T., et al. (2014). Atomically precise doping of monomanganese ion into coreless supertetrahedral chalcogenide nanocluster inducing unusual red shift in Mn2+ emission. Journal of the American Chemical Society, 136(12), 4769–4779.

    Article  Google Scholar 

  88. Hardy, G. E., & Zink, J. I. (1976). Triboluminescence and pressure dependence of the photoluminesnce of tetrahedral manganese(II) complexes. Inorganic Chemistry, 15(21), 3061–3065.

    Article  Google Scholar 

  89. Chandra, B. P., & Balakrishna, R. K. (1982). Mechanoluminescence, electroluminescence and high-pressure photoluminescence of Mn(Ph3 P0)2Br2. Journal of Luminescence, 27, 101–107.

    Article  Google Scholar 

  90. Chandra, B. P., Jaiswal, A. K., Chandraker, T. R., & Kaza, B. R. (1981). Mechanoluminescence and electroluminescence of non-photoluminescent Mn(Ph3PO)2Cl2 crystals. Physica Status Solidi A, 68, K207–K210.

    Article  Google Scholar 

  91. Chandra, B. P., Deshmukh, N. G., Sahu, R. B., & Verma, A. K. (1986). Deformation-induced after-glow in [(C2H5)4N]2MnBr4 crystals. Crystal Research and Technology, 21(12), 1559–1565.

    Article  Google Scholar 

  92. Chandra, B. P., Khokhar, M. S. K., Gupta, R. S., & Majumdar, B. (1987). Tetrahedral manganese(II) complexes—Intense and unique type of mechanoluminophores. Journal of Physics, 29(4), 399–407.

    Google Scholar 

  93. Terasaki, N., Zhang, H., Yamada, H., & Xu, C.-N. (2011). Mechanoluminescent light source for a fluorescent probe molecule. Chemical Communications, 47(28), 8034–8036.

    Article  Google Scholar 

  94. Akiyama, M., Xu, C.-N., Matsui, H., Nonaka, K., & Watanabe, T. (1999). Recovery phenomenon of mechanoluminescence from Ca2Al2SiO7:Ce by irradiation with ultraviolet light. Applied Physics Letters, 75(17), 2548.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ercules Epaminondas Sousa Teotonio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Teotonio, E.E.S. et al. (2016). Mechanoluminescence of Coordination Compounds. In: Olawale, D., Okoli, O., Fontenot, R., Hollerman, W. (eds) Triboluminescence. Springer, Cham. https://doi.org/10.1007/978-3-319-38842-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-38842-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-38841-0

  • Online ISBN: 978-3-319-38842-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics