Skip to main content

Nature of the Electronic Charge Carriers Involved in Triboluminescence

  • Chapter
  • First Online:
Triboluminescence

Abstract

Mechanical action, sometimes even gentle mechanical action such as rubbing and tumbling, can produce triboluminescence. The emitted light often comes from within the bulk. The question then arises: How is the energy transferred from the surface, where the mechanical action occurs, into the bulk? Key to understand this process lies with the peroxy defects, a type of defect in oxide materials that has been widely overlooked. Peroxy defects are ubiquitous in many materials. They consist of pairs of oxygen anions that have changed their valence from 2− to 1−. Under normal conditions the two O are tightly coupled, localized, forming a very short O–O bond. However, this bond is also very labile. Slight variations in local lattice environment, even transient perturbations such as by sound waves, can cause the peroxy bonds to break. When this happens, electron-hole pairs are generated, of which the electrons are trapped in the broken peroxy bonds, while the holes turn into mobile charge carriers, “positive holes,” which have the ability to flow away from the sites where they had been generated, traveling far afield, propagating via a phonon-assisted electron hopping mechanism at speeds up to about 100 m/s. Chemically, positive holes are O in a matrix of O2−, strongly oxidizing, able to oxidize transition metal cations. Positive holes can also recombine with broken peroxy bonds, in which case up to 2.4 eV may be released. This energy can be transferred to nearby transition metal cations causing them to become electronically excited. If these cations radiatively de-excite, luminescence will occur.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    With k being the Boltzmann constant and T the absolute temperature.

  2. 2.

    Square brackets outline the essential parts of the point defects. V stands for vacancy. Subscript i means interstitial and subscripts identify the crystallographic site (except for oxygen sites, where subscripts are omitted). Superscripts prime, dot, and x designate single-negative, positive, and neutral charges, respectively, while double prime and double dot designate double-negative and positive charges, respectively, relative to the unperturbed crystal structure.

References

  1. Langford, S. C., & Dickinson, J. T. (2009). Emission of particles and photons from the fracture of minerals and inorganic materials. In Spectroscopic characterization of minerals and their surfaces (pp 224–244). ACS Symposium Series, Vol. 415, Chapter 12, doi: 10.1021/bk-1990-0415.ch012.

    Google Scholar 

  2. Kittel, C. (1996). Introduction to solid state physics (7th ed.). New York: Wiley.

    MATH  Google Scholar 

  3. Griscom, D. L. (1990). Electron spin resonance. Glass Science and Technology, 48, 151–251.

    Article  Google Scholar 

  4. Kathrein, H., & Freund, F. (1983). Electrical conductivity of magnesium oxide single crystal below 1200 K. Journal of Physics and Chemistry of Solids, 44, 177–186.

    Article  Google Scholar 

  5. Batllo, F., LeRoy, R. C., Parvin, K., Freund, F., & Freund, M. M. (1991). Positive hole centers in magnesium oxide—correlation between magnetic susceptibility, dielectric anomalies and electric conductivity. Journal of Applied Physics, 69, 6031–6033.

    Article  Google Scholar 

  6. Freund, F., Freund, M. M., & Batllo, F. (1993). Critical review of electrical conductivity measurements and charge distribution analysis of magnesium oxide. Journal of Geophysical Research, 98(B12), 22209–22229.

    Article  Google Scholar 

  7. Martens, R., Gentsch, H., & Freund, F. (1976). Hydrogen release during the thermal decomposition of magnesium hydroxide to magnesium oxide. Journal of Catalysis, 44, 366–372.

    Article  Google Scholar 

  8. Freund, F., Scheikh-ol-Eslami, N., & Gentsch, H. (1975). Formation of O centers by homolytic decomposition of OH groups on magnesium oxide. Angewandte Chemie, International Edition, 14(8), 568–569.

    Article  Google Scholar 

  9. Freund, T., Martens, R., & Scheikh-ol-Eslami, N. (1975). Recrystallization effect during the dehydration of magnesium hydroxide. Journal of Thermal Analysis, 8(3), 525–529.

    Article  Google Scholar 

  10. Freund, F., & Sperling, V. (1976). A magnesium oxide defect structure of hexagonal symmetry. Materials Research Bulletin, 11, 621–630.

    Article  Google Scholar 

  11. Freund, F., & Wengeler, H. (1982). The infrared spectrum of OH-compensated defect sites in C-doped MgO and CaO single crystals. Journal of Physics and Chemistry of Solids, 43, 129–145.

    Article  Google Scholar 

  12. Kröger, F. A. (1964). The chemistry of imperfect crystals. Amsterdam: North-Holland.

    Google Scholar 

  13. Kriegler, R. J., & Welsh, H. L. (1968). The induced infrared fundamental band of hydrogen dissolved in solid argon. Canadian Journal of Physics, 46(10), 1181–1189. doi:10.1139/p68-151.

    Article  Google Scholar 

  14. Taurian, O. E., Springborg, M., & Christensen, N. E. (1985). Self-consistent electronic structures of MgO and SrO. Solid State Communications, 55(4), 351–355.

    Article  Google Scholar 

  15. Henderson, B., & Wertz, J. E. (1977). Defects in the alkaline earth oxides. London: Taylor & Francis.

    Google Scholar 

  16. Marfunin, A. S. (1979). Spectroscopy, luminescence and radiation centers in minerals (pp. 257–262). New York: Springer Verlag.

    Book  Google Scholar 

  17. Pacchioni, G., Sousa, C., Illas, F., Parmigiani, F., & Bagus, P. S. (1993). Measures of ionicity of alkaline-earth oxides from the analysis of ab initio cluster wave functions. Physical Review B, 48, 11573–11582.

    Article  Google Scholar 

  18. Shluger, A. L., Heifets, E. N., Gale, J. D., & Catlow, C. R. A. (1992). Theoretical simulation of localized holes in MgO. Journal of Physics: Condensed Matter, 4(26), 5711–5722.

    Google Scholar 

  19. Scoville, J., Sornette, J., & Freund, F. T. (2015). Paradox of peroxy defects and positive holes in rocks: Part II. Outflow of electric currents from stressed rocks. Journal of Asian Earth Sciences, 114(Part 2), 338–351.

    Article  Google Scholar 

  20. Maeda, I. (1986). Activities of triboluminescence at sample failure of granite. Journal of the Faculty of Science, Hokkaido University. Series 7, Geophysics, 8(1), 65–81.

    Google Scholar 

  21. Kathrein, H., Freund, F., & Nagy, J. (1984). O-ions and their relation to traces of H2O and CO2 magnesium oxide: an EPR study. Journal of Physics and Chemistry of Solids, 45, 1155–1163.

    Article  Google Scholar 

  22. Duley, W. W., & Rosatzin, M. (1985). The orange luminescence band in MgO crystals. Journal of Physics and Chemistry of Solids, 46(2), 165–170.

    Article  Google Scholar 

  23. Harris, D. C., & Bertolucci, M. D. (1989). Symmetry and spectroscopy: An introduction to vibrational and electronic spectroscopy. New York: Dover Publications.

    Google Scholar 

  24. Miura, T., Hosobuchi, E., & Arakawa, I. (2009). Spectroscopic studies of triboluminescence from a sliding contact between diamond, SiO2, MgO, NaCl, and Al2O3 (0001). Vacuum, 84(5), 573–577.

    Article  Google Scholar 

  25. Williams, G. P., & Turner, T. J. (1979). Triboluminescence in single crystal alkaline earth oxides. Solid State Communications, 29, 3.

    Article  Google Scholar 

  26. Mahadeva, S. K., Jincheng Fan, A. B., Sreelatha, K. S., Lyubov, B., & Rao, K. V. (2013). Magnetism of amorphous and nano-crystallized Dc-sputter-deposited MgO thin films. Nanomaterials, 3, 486–497.

    Article  Google Scholar 

  27. Martínez-Boubeta, C., Martíneza, A., Hernández, S., Pellegrino, P., Antony, A., Bertomeu, J., et al. (2011). Blue luminescence at room temperature in defective MgO films. Solid State Communications, 151(10), 751–753.

    Article  Google Scholar 

  28. Donker, H., Smit, W. M. A., & Blasse, G. (1987). On the luminescence of CaO:Sn2+. Physica Status Solidi, 145(1), 333–342.

    Article  Google Scholar 

  29. Gonzalez, R., Chen, C. B. Y., Liu, H., Williams, G. P., Jr., Rosenblatt, G. H., Williams, R. T., et al. (1993). Luminescence properties of deformed CaO crystals. Physical Review B, 47, 4910.

    Article  Google Scholar 

  30. Melton, R., Danieley, N., & Turner, T. J. (1980). Luminescence of MgO during mechanical deformation. Physica Status Solidi A, 57(2), 755–764.

    Article  Google Scholar 

  31. Chakrabarti, K., Mathur, V. K., Rhodes, J. F., & Abbundi, R. J. (1988). Stimulated luminescence in rare‐earth‐doped MgS. Journal of Applied Physics, 64, 1363–1366.

    Article  Google Scholar 

  32. Aich, N., Appalla, A., Saleh, N. B., & Ziehl, P. (2013). Triboluminescence for distributed damage assessment in cement-based materials. Journal of Intelligent Material Systems and Structures, 24(14), 1714–1721.

    Article  Google Scholar 

  33. Bergeron, N. P., Hollerman, W. A., Goedeke, S. M., Hovater, M., Hubbs, W., Finchum, A., et al. (2006). Experimental evidence of triboluminescence induced by hypervelocity impact. International Journal of Impact Engineering, 33, 91–99.

    Article  Google Scholar 

  34. Fontenot, R. S., Hollerman, W. A., Bhat, K. N., & Aggarwal, M. D. (2012). Comparison of the triboluminescent properties for europium tetrakis and ZnS:Mn powders. Journal of Theoretical and Applied Physics, 6, 15.

    Article  Google Scholar 

  35. Blasse, G., & Grabmaier, B. C. (1994). Luminescent materials. New York: Springer.

    Book  Google Scholar 

  36. Chandra, B. P., & Zink, J. I. (1980). Mechanical characteristics and mechanism of the triboluminescence of fluorescent molecular crystals. Journal of Chemical Physics, 73(12), 5933–5941.

    Article  Google Scholar 

  37. Wang, J., Zhang, M., Zhang, Q., Ding, W., & Su, Q. (2007). The photoluminescence and thermoluminescence properties of novel green long-lasting phosphorescence materials Ca8Mg(SiO4)4Cl2:Eu2+,Nd3+. Applied Physics B, 87(2), 249–254.

    Article  Google Scholar 

  38. Teotonio, E. E. S., Fett, G. M., Brito, H. F., Faustino, W. M., de Sa, G. F., Felinto, C. F. C., et al. (2008). Evaluation of intramolecular energy transfer process in the lanthanide(III) bis- and tris-(TTA) complexes: Photoluminescent and triboluminescent behavior. Journal of Luminescence, 128, 193–198.

    Article  Google Scholar 

Download references

Acknowledgments

The early part of this work was supported by the Deutsche Forschungsgemeinschaft in Germany, and the latter part primarily by NSF and NASA. Current support by NASA is provided by the grant #NNX12AL71G. I thank many students and coworkers who participated in this research and helped me develop the knowledge base, on which this chapter is based. Their names are listed as coauthors in the references given below.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedemann T. Freund .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Freund, F.T. (2016). Nature of the Electronic Charge Carriers Involved in Triboluminescence. In: Olawale, D., Okoli, O., Fontenot, R., Hollerman, W. (eds) Triboluminescence. Springer, Cham. https://doi.org/10.1007/978-3-319-38842-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-38842-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-38841-0

  • Online ISBN: 978-3-319-38842-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics