Skip to main content

3D Sensing Using Solid-State Wire-Shaped Photovoltaic Sensor in TL-Based Structural Health Monitoring

  • Chapter
  • First Online:
Book cover Triboluminescence

Abstract

Over the past two decades, photovoltaic (PV) cell research continues to gain momentum since its environmental sustainability and low cost provide a great foundation for practical application. Recently, the flexibility of PV cell has drawn researcher’s attention when talking about light sensing. The specially designed PV sensors with 3D feature and low energy sensitivity are potentially applicable to intrinsic structural health monitoring (iSHM) systems. This Chapter will first address the principle of this novel monitoring systems with TL effects, then discuss the use of carbon-based PV sensors. The investigation of wire-shaped PV sensor may provide some useful information about the surface and interface state that may explain the advantage of this novel iSHM system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balageas, D., Fritzen, C. P., & Guemes, A. (2010). Structural health monitoring. London: ISTE.

    Google Scholar 

  2. Chang, F.-K. (1999). Structural health monitoring: A Summary Report on the First International Workshop on Structural Health Monitoring. Proceedings of the Second International Workshop on Structural Health Monitoring, Stanford, CA (pp. xix–xxiv).

    Google Scholar 

  3. Lynch, J. P. (2005). Design of a wireless active sensing unit for localized structural health monitoring. Structural Control & Health Monitoring, 12, 405–423.

    Article  Google Scholar 

  4. Farrar, C. R., & Worden, K. (2007). An introduction to structural health monitoring. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365, 303–315.

    Article  Google Scholar 

  5. Worden, K., Farrar, C. R., Manson, G., & Park, G. (2007). The fundamental axioms of structural health monitoring. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 463, 1639–1664.

    Article  Google Scholar 

  6. Sage, I., Badcock, R., Humberstone, L., Geddes, N., Kemp, M., & Bourhill, G. (1999). Triboluminescent damage sensors. Smart Materials & Structures, 8, 504–510.

    Article  Google Scholar 

  7. Kirikera, G. R., Shinde, V., Schulz, M. J., Ghoshal, A., Sundaresan, M., & Allemang, R. (2007). Damage localisation in composite and metallic structures using a structural neural system and simulated acoustic emissions. Mechanical Systems and Signal Processing, 21, 280–297.

    Article  Google Scholar 

  8. Walton, A. J. (1977). Triboluminescence. Advances in Physics, 26, 887–948.

    Article  Google Scholar 

  9. Chandra, B. P., Chandra, V. K., & Jha, P. (2013). Models for intrinsic and extrinsic fracto-mechanoluminescence of solids. Journal of Luminescence, 135, 139–153.

    Article  Google Scholar 

  10. Aggarwal, M. D., Penn, B. G., Miller, J., Sadate, S., & Batra, A. K. (2008). Triboluminescent materials for smart optical damage sensors for space applications. Hanover, MD: NASA CASI.

    Google Scholar 

  11. Gerische, H., Michelbe, M., Rebentro, F., & Tributsc, H. (1968). Sensitization of charge injection into semiconductors with large band gap. Electrochimica Acta, 13, 1509–1515.

    Article  Google Scholar 

  12. Oregan, B., & Gratzel, M. (1991). A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films. Nature, 353, 737–740.

    Article  Google Scholar 

  13. Yan, J., Uddin, M. J., Dickens, T. J., & Okoli, O. I. (2013). Carbon nanotubes (CNTs) enrich the solar cells. Solar Energy, 96, 239–252.

    Article  Google Scholar 

  14. Fan, X., Chu, Z. Z., Chen, L., Zhang, C., Wang, F. Z., Tang, Y. W., et al. (2008). Fibrous flexible solid-type dye-sensitized solar cells without transparent conducting oxide. Applied Physics Letters, 92, 113510.

    Article  Google Scholar 

  15. Fan, X., Chu, Z. Z., Wang, F. Z., Zhang, C., Chen, L., Tang, Y. W., et al. (2008). Wire-shaped flexible dye-sensitized solar cells. Advanced Materials, 20, 592–595.

    Article  Google Scholar 

  16. Uddin, M. J., Daramola, D. E., Velasquez, E., Dickens, T. J., Yan, J., Hammel, E., et al. (2014). A high efficiency 3D photovoltaic microwire with carbon nanotubes (CNT)-quantum dot (QD) hybrid interface. Physica Status Solidi (RRL): Rapid Research Letters, 8(11), 898–903.

    Article  Google Scholar 

  17. Yan, J., Uddin, M. J., Dickens, T. J., Daramola, D. E., & Okoli, O. I. (2014). 3D wire-shaped dye-sensitized solar cells in solid state using carbon nanotube yarns with hybrid photovoltaic structure. Advanced Materials Interfaces. doi:10.1002/admi.201400075.

    Google Scholar 

  18. Barazzouk, S., Hotchandani, S., Vinodgopal, K., & Kamat, P. V. (2004). Single-wall carbon nanotube films for photocurrent generation. A prompt response to visible-light irradiation. Journal of Physical Chemistry B, 108, 17015–17018.

    Article  Google Scholar 

  19. Kongkanand, A., Dominguez, R. M., & Kamat, P. V. (2007). Single wall carbon nanotube scaffolds for photoelectrochemical solar cells. Capture and transport of photogenerated electrons. Nano Letters, 7, 676–680.

    Article  Google Scholar 

  20. Nwanya, A. C., Ezema, F. I., & Ejikeme, P. M. (2011). Dyed sensitized solar cells: A technically and economically alternative concept to p-n junction photovoltaic devices. International Journal of the Physical Sciences, 6, 5190–5201.

    Google Scholar 

  21. Matthews, D., Infelta, P., & Gratzel, M. (1996). Calculation of the photocurrent-potential characteristic for regenerative, sensitized semiconductor electrodes. Solar Energy Materials and Solar Cells, 44, 119–155.

    Article  Google Scholar 

  22. Lee, T. Y., Alegaonkar, P. S., & Yoo, J.-B. (2007). Fabrication of dye sensitized solar cell using TiO2 coated carbon nanotubes. Thin Solid Films, 515, 5131–5135.

    Article  Google Scholar 

  23. Han, H., Bach, U., Cheng, Y.-B., Caruso, R. A., & Macrae, C. (2009). A design for monolithic all-solid-state dye-sensitized solar cells with a platinized carbon counterelectrode. Applied Physics Letters, 94, 103102–103102-3.

    Article  Google Scholar 

  24. Nam, J. G., Park, Y. J., Kim, B. S., & Lee, J. S. (2010). Enhancement of the efficiency of dye-sensitized solar cell by utilizing carbon nanotube counter electrode. Scripta Materialia, 62, 148–150.

    Article  Google Scholar 

  25. Ito, S., Ha, N. L. C., Rothenberger, G., Liska, P., Comte, P., Zakeeruddin, S. M., et al. (2006). High-efficiency (7.2%) flexible dye-sensitized solar cells with Ti-metal substrate for nanocrystalline-TiO2 photoanode. Chemical Communications, 42, 4004–4006.

    Article  Google Scholar 

  26. Fu, Y. P., Lv, Z. B., Wu, H. W., Hou, S. C., Cai, X., Wang, D., et al. (2012). Dye-sensitized solar cell tube. Solar Energy Materials and Solar Cells, 102, 212–219.

    Article  Google Scholar 

  27. Huang, S. Q., Guo, X. Z., Huang, X. M., Zhang, Q. X., Sun, H. C., Li, D. M., et al. (2011). Highly efficient fibrous dye-sensitized solar cells based on TiO2 nanotube arrays. Nanotechnology, 22, 315402.

    Article  Google Scholar 

  28. Lv, Z. B., Fu, Y. P., Hou, S. C., Wang, D., Wu, H. W., Zhang, C., et al. (2011). Large size, high efficiency fiber-shaped dye-sensitized solar cells. Physical Chemistry Chemical Physics, 13, 10076–10083.

    Article  Google Scholar 

  29. Wang, H., Liu, Y., Li, M., Huang, H., Zhong, M., & Shen, H. (2009). Hydrothermal growth of large-scale macroporous TiO2 nanowires and its application in 3D dye-sensitized solar cells. Applied Physics A, 97, 25–29.

    Article  Google Scholar 

  30. Weintraub, B., Wei, Y. G., & Wang, Z. L. (2009). Optical fiber/nanowire hybrid structures for efficient three-dimensional dye-sensitized solar cells. Angewandte Chemie International Edition, 48, 8981–8985.

    Article  Google Scholar 

  31. Hou, S. C., Cai, X., Fu, Y. P., Lv, Z. B., Wang, D., Wu, H. W., et al. (2011). Transparent conductive oxide-less, flexible, and highly efficient dye-sensitized solar cells with commercialized carbon fiber as the counter electrode. Journal of Materials Chemistry, 21, 13776–13779.

    Article  Google Scholar 

  32. Hou, S. C., Cai, X., Wu, H. W., Lv, Z. B., Wang, D., Fu, Y. P., et al. (2012). Flexible, metal-free composite counter electrodes for efficient fiber-shaped dye-sensitized solar cells. Journal of Power Sources, 215, 164–169.

    Article  Google Scholar 

  33. Zhang, L. H., Shi, E. Z., Li, Z., Li, P. X., Jia, Y., Ji, C. Y., et al. (2012). Wire-supported CdSe nanowire array photoelectrochemical solar cells. Physical Chemistry Chemical Physics, 14, 3583–3588.

    Article  Google Scholar 

  34. Zhang, S., Ji, C. Y., Bian, Z. Q., Liu, R. H., Xia, X. Y., Yun, D. Q., et al. (2011). Single-wire dye-sensitized solar cells wrapped by carbon nanotube film electrodes. Nano Letters, 11, 3383–3387.

    Article  Google Scholar 

  35. Liu, Z. Y., & Misra, M. (2010). Dye-sensitized photovoltaic wires using highly ordered TiO2 nanotube arrays. ACS Nano, 4, 2196–2200.

    Article  Google Scholar 

  36. Liu, D. Y., Zhao, M. Y., Li, Y., Bian, Z. Q., Zhang, L. H., Shang, Y. Y., et al. (2012). Solid-state, polymer-based fiber solar cells with carbon nanotube electrodes. ACS Nano, 6, 11027–11034.

    Google Scholar 

  37. Zhang, S., Ji, C. Y., Bian, Z. Q., Yu, P. R., Zhang, L. H., Liu, D. Y., et al. (2012). Porous, platinum nanoparticle-adsorbed carbon nanotube yarns for efficient fiber solar cells. ACS Nano, 6, 7191–7198.

    Article  Google Scholar 

  38. Liu, Y., Li, M., Wang, H., Zheng, J. M., Xu, H. M., Ye, Q. H., et al. (2010). Synthesis of TiO2 nanotube arrays and its application in mini-3D dye-sensitized solar cells. Journal of Physics D: Applied Physics, 43, 205103.

    Article  Google Scholar 

  39. Wang, Y. H., Liu, Y., Yang, H. X., Wang, H., Shen, H., Li, M., et al. (2010). An investigation of DNA-like structured dye-sensitized solar cells. Current Applied Physics, 10, 119–123.

    Article  Google Scholar 

  40. Uddin, M. J., Dickens, T., Yan, J., Chirayath, R., Olawale, D. O., & Okoli, O. I. (2013). Solid state dye-sensitized photovoltaic micro-wires (DSPMs) with carbon nanotubes yarns as counter electrode: Synthesis and characterization. Solar Energy Materials and Solar Cells, 108, 65–69.

    Article  Google Scholar 

  41. Chen, T., Wang, S., Yang, Z., Feng, Q., Sun, X., Li, L., et al. (2011). Flexible, light-weight, ultrastrong, and semiconductive carbon nanotube fibers for a highly efficient solar cell. Angewandte Chemie International Edition, 50, 1815–1819.

    Article  Google Scholar 

  42. Peng, H., Jain, M., Peterson, D. E., Zhu, Y., & Jia, Q. (2008). Composite carbon nanotube/silica fibers with improved mechanical strengths and electrical conductivities. Small, 4, 1964–1967.

    Article  Google Scholar 

  43. Peng, H. S., Sun, X. M., Cai, F. J., Chen, X. L., Zhu, Y. C., Liao, G. P., et al. (2009). Electrochromatic carbon nanotube/polydiacetylene nanocomposite fibres. Nature Nanotechnology, 4, 738–741.

    Article  Google Scholar 

  44. Cai, F. J., Chen, T., & Peng, H. S. (2012). All carbon nanotube fiber electrode-based dye-sensitized photovoltaic wire. Journal of Materials Chemistry, 22, 14856–14860.

    Article  Google Scholar 

  45. Chen, T., Qiu, L. B., Cai, Z. B., Gong, F., Yang, Z. B., Wang, Z. S., et al. (2012). Intertwined aligned carbon nanotube fiber based dye-sensitized solar cells. Nano Letters, 12, 2568–2572.

    Article  Google Scholar 

  46. Uddin, M. J., Dickens, T. J., Yan, J., Olawale, D. O., Okoli, O. I., & Cesano, F. (2012). Solid-state dye sensitized optoelectronic carbon naotube-wires: An energy harvesting damage sensor with nanotechnology approach. Proceedings of the ASME 2012 Stone Mountain, Georgia, USA (pp. 19–25).

    Google Scholar 

  47. Murakami, T. N., & Gratzel, M. (2008). Counter electrodes for DSC: Application of functional materials as catalysts. Inorganica Chimica Acta, 361, 572–580.

    Article  Google Scholar 

  48. Papageorgiou, N. (2004). Counter-electrode function in nanocrystalline photoelectrochemical cell configurations. Coordination Chemistry Reviews, 248, 1421–1446.

    Article  Google Scholar 

  49. Wu, M. X., Lin, X. A., Hagfeldt, A., & Ma, T. L. (2011). A novel catalyst of WO2 nanorod for the counter electrode of dye-sensitized solar cells. Chemical Communications, 47, 4535–4537.

    Article  Google Scholar 

  50. Lee, Y.-L., Chi, C.-F., & Liau, S.-Y. (2009). CdS/CdSe co-sensitized TiO2 photoelectrode for efficient hydrogen generation in a photoelectrochemical cell. Chemistry of Materials, 22, 922–927.

    Article  Google Scholar 

  51. Lee, Y.-L., Huang, B.-M., & Chien, H.-T. (2008). Highly efficient CdSe-sensitized TiO2 photoelectrode for quantum-dot-sensitized solar cell applications. Chemistry of Materials, 20, 6903–6905.

    Article  Google Scholar 

  52. Dozzi, M., & Selli, E. (2013). Specific facets-dominated anatase TiO2: Fluorine-mediated synthesis and photoactivity. Catalysts, 3, 455–485.

    Article  Google Scholar 

  53. Yang, H. G., Sun, C. H., Qiao, S. Z., Zou, J., Liu, G., Smith, S. C., et al. (2008). Anatase TiO(2) single crystals with a large percentage of reactive facets. Nature, 453, 638–U4.

    Article  Google Scholar 

  54. Naoi, K., Ohko, Y., & Tatsuma, T. (2004). TiO2 films loaded with silver nanoparticles: Control of multicolor photochromic behavior. Journal of the American Chemical Society, 126, 3664–3668.

    Article  Google Scholar 

  55. Sondergaard, R. R., Espinosa, N., Jorgensen, M., & Krebs, F. C. (2014). Efficient decommissioning and recycling of polymer solar cells: Justification for use of silver. Energy & Environmental Science, 7, 1006–1012.

    Article  Google Scholar 

  56. Uddin, M. J., Cesano, F., Bertarione, S., Bonino, F., Bordiga, S., Scarano, D., et al. (2008). Tailoring the activity of Ti-based photocatalysts by playing with surface morphology and silver doping. Journal of Photochemistry and Photobiology A: Chemistry, 196, 165–173.

    Article  Google Scholar 

  57. Zhao, D., Liu, T., Park, J. G., Zhang, M., Chen, J.-M., & Wang, B. (2012). Conductivity enhancement of aerosol-jet printed electronics by using silver nanoparticles ink with carbon nanotubes. Microelectronic Engineering, 96, 71–75.

    Article  Google Scholar 

  58. Chao, H. E., Yun, Y. U., Xingfang, H. U., & Larbot, A. (2003). Effect of silver doping on the phase transformation and grain growth of sol-gel titania powder. Journal of the European Ceramic Society, 23, 1457–1464.

    Article  Google Scholar 

  59. Peng, M., & Zou, D. (2015). Flexible fiber/wire-shaped solar cells in progress: Properties, materials, and designs. Journal of Materials Chemistry A, 3, 20435–20458.

    Article  Google Scholar 

  60. Yun, M. J., Cha, S. I., Seo, S. H., Kim, H. S., & Lee, D. Y. (2015). Insertion of dye-sensitized solar cells in textiles using a conventional weaving process. Scientific Reports, 5, 11022.

    Article  Google Scholar 

  61. Zhang, Z., Yang, Z., Wu, Z., Guan, G., Pan, S., Zhang, Y., et al. (2014). Weaving efficient polymer solar cell wires into flexible power textiles. Advanced Energy Materials. doi:10.1002/aenm.201301750.

    Google Scholar 

  62. Olawale, D. O., Dickens, T., Uddin, M. J., & Okoli, O. O. (2012). Triboluminesence multifunctional cementitious composites with in situ damage sensing capability. Proc. SPIE 8345 (pp. 834538–834538).

    Google Scholar 

Download references

Acknowledgement

This work is supported by the US National Science Foundation through grant ID CMMI-0969413 and Air Force Research Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Okenwa O. I. Okoli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yan, J., Uddin, M.J., Olawale, D.O., Dickens, T.J., Okoli, O.O.I. (2016). 3D Sensing Using Solid-State Wire-Shaped Photovoltaic Sensor in TL-Based Structural Health Monitoring. In: Olawale, D., Okoli, O., Fontenot, R., Hollerman, W. (eds) Triboluminescence. Springer, Cham. https://doi.org/10.1007/978-3-319-38842-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-38842-7_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-38841-0

  • Online ISBN: 978-3-319-38842-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics