Skip to main content

Introduction to Triboluminescence

  • Chapter
  • First Online:

Abstract

Triboluminescence phenomenon has generated extensive research interest over the years since it was reportedly discovered in the sixteenth century by Sir Francis Bacon. Triboluminescent materials are being developed into damage, stress, and impact sensors in diverse engineering systems such as civil and aerospace structures. This introductory chapter provides an overview of the place of triboluminescence within the luminescence spectrum. It also describes the three forms of triboluminescence identified in literature mainly elastico, plastico, and fracto triboluminescence. Results of studies in identifying most promising triboluminescent materials for sensors are also reported.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. O’Hara, P. B., Engelson, C., & St Peter, W. (2005). Turning on the light: Lessons from luminescence. Journal of Chemical Education, 82, 49–52.

    Article  Google Scholar 

  2. Vishwakarma, K., Ramrakhiani, M., & Chandra, B. P. (2007). Luminescence and its application. International Journal of Nanotechnology and Applications, 1, 29–34.

    Google Scholar 

  3. Olawale, D. O., Dickens, T., Sullivan, W. G., Okoli, O. I., Sobanjo, J. O., & Wang, B. (2011). Progress in triboluminescence-based smart optical sensor system. Journal of Luminescence, 131, 1407–1418.

    Article  Google Scholar 

  4. Virk, H. S. (2015). History of luminescence from ancient to modern times. Defect and Diffusion Forum, 361, 1–13.

    Article  Google Scholar 

  5. Goedeke, S., Allison, S., Womack, F., Bergeron, N., Hollerman, W. (2003). Tribolumininescence and its application to space-based damage sensors. Proceedings of the Propulsion Measurement Sensor Development Workshop. Huntsville, Alabama.

    Google Scholar 

  6. Kawaguchi, Y. (1998). Fractoluminescence spectra in crystalline quartz. Japanese Journal of Applied Physics: Part 1-Regular Papers Short Notes and Review Papers, 37, 1892–1896.

    Article  Google Scholar 

  7. Reynolds, G. T. (1997). Piezoluminescence from a ferroelectric polymer and quartz. Journal of Luminescence, 75, 295–299.

    Article  Google Scholar 

  8. Chandra, B. P., Elyas, M., & Majumdar, B. (1982). Dislocation models of mechanoluminescence in [gamma]- and X-irradiated alkali halides crystals. Solid State Communications, 42, 753–757.

    Article  Google Scholar 

  9. Chandra, B. P., & Shrivastava, K. K. (1978). Dependence of mechanoluminescence in rochelle-salt crystals on the charge-produced during their fracture. Journal of Physics and Chemistry of Solids, 39, 939–940.

    Article  Google Scholar 

  10. Nevshupa, R., & Hiratsuka, K. (2015). Triboluminescence. In E. Gnecco & E. Meyer (Eds.), Fundamentals of friction and wear on the nanoscale. Cham: Springer International Publishing.

    Google Scholar 

  11. Bergeron, N. P., Hollerman, W. A., Goedeke, S. M., Hovater, M., Hubbs, W., Finchum, A., et al. (2006). Experimental evidence of triboluminescence induced by hypervelocity impact. International Journal of Impact Engineering, 33, 91–99.

    Article  Google Scholar 

  12. Sweeting, L. M. (2001). Triboluminescence with and without air. Chemistry of Materials, 13, 854–870.

    Article  Google Scholar 

  13. Walton, A. J. (1977). Triboluminesence. Advances in Physics, 26, 887–948.

    Article  Google Scholar 

  14. Derjaguin, B. V., Krotova, N. A., & Toporov, Y. P. (1981). Emission of high-speed electrons and other phenomena accompanying the process of breaking adhesion bonds. In J. M. Georges (Ed.), Tribology series. Amsterdam: Elsevier.

    Google Scholar 

  15. Miura, T., Chini, M., & Bennewitz, R. (2007). Forces, charges, and light emission during the rupture of adhesive contacts. Journal of Applied Physics, 102, 103509.

    Article  Google Scholar 

  16. Licoppe, C. (2013). La formation de la pratique scientifique: le discours de l’expérience en France et en Angleterre (1630–1820), La découverte.

    Google Scholar 

  17. Weiser, H. B. (1918). Crystalloluminescence II. The Journal of Physical Chemistry, 22, 576–595.

    Article  Google Scholar 

  18. Brenner, M. P., Hilgenfeldt, S., & Lohse, D. (2002). Single-bubble sonoluminescence. Reviews of Modern Physics, 74, 425.

    Article  Google Scholar 

  19. Tsuboi, Y., Seto, T., & Kitamura, N. (2008). Laser-induced shock wave can spark triboluminescence of amorphous sugars. The Journal of Physical Chemistry. A, 112, 6517–6521.

    Article  Google Scholar 

  20. Butyagin, P. Y., Yerofeyev, V., Musayelyan, I., Patrikeyev, G., Streletskii, A., & Shulyak, A. (1970). The luminescence accompanying mechanical deformation and rupture of polymers. Polymer Science U S S R, 12, 330–342.

    Article  Google Scholar 

  21. Xu, C. N., Watanabe, T., Akiyama, M., & Zheng, X. G. (1999). Direct view of stress distribution in solid by mechanoluminescence. Applied Physics Letters, 74, 2414–2416.

    Article  Google Scholar 

  22. Urbakh, M., Klafter, J., Gourdon, D., & Israelachvili, J. (2004). The nonlinear nature of friction. Nature, 430, 525–528.

    Article  Google Scholar 

  23. Chandra, B. P. (1998). Luminescence of solids. New York: Plenum Press.

    Google Scholar 

  24. Chandra, B. P., Baghel, R. N., & Chandra, V. K. (2010). Mechanoluminescenct glow curve of ZnS:Mn. Chalcogenide Letters, 7, 1–9.

    Google Scholar 

  25. Lu, H.-Y., & Chu, S.-Y. (2004). The mechanism and characteristics of ZnS-based phosphor powders. Journal of Crystal Growth, 265, 476–481.

    Article  Google Scholar 

  26. Grmela, L., Macku, R., & Tomanek, P. (2008). Near-field measurement of ZnS:Mn nanocrystal and bulk thin-film electroluminescent devices. Journal of Microscopy (Oxford), 229, 275–280.

    Article  MathSciNet  Google Scholar 

  27. Manzoor, K., Vadera, S. R., Kumar, N., & Kutty, T. R. N. (2004). Multicolor electroluminescent devices using doped ZnS nanocrystals. Applied Physics Letters, 84, 284–286.

    Article  Google Scholar 

  28. Suyver, J. F., Wuister, S. F., Kelly, J. J., & Meijerink, A. (2001). Synthesis and Photoluminescence of Nanocrystalline ZnS:Mn2+. Nano Letters, 1, 429–433.

    Article  Google Scholar 

  29. Wood, V., Halpert, J. E., Panzer, M. J., Bawendi, M. G., & Bulovic, V. (2009). Alternating current driven electroluminescence from ZnSe/ZnS:Mn/ZnS nanocrystals. Nano Letters, 9, 2367–2371.

    Article  Google Scholar 

  30. Chandra, B. P., Xu, C. N., Yamada, H., & Zheng, X. G. (2010). Luminescence induced by elastic deformation of ZnS:Mn nanoparticles. Journal of Luminescence, 130, 442–450.

    Article  Google Scholar 

  31. Kobyakov, I. B., & Pado, G. S. (1968). Investigation of electrical and elastic properties of hexagonal zinc sulfide in temperature range 1.5-300 degrees K. Soviet Physics Solid State, 9, 1707.

    Google Scholar 

  32. Chandra, B. P., & Rathore, A. S. (1995). Classification of mechanoluminescence. Crystal Research and Technology, 30, 885–896.

    Article  Google Scholar 

  33. Sage, I., & Bourhill, G. (2001). Triboluminescent materials for structural damage monitoring. Journal of Materials Chemistry, 11, 231–245.

    Article  Google Scholar 

  34. Chudacek, I. (1966). Influence of pressure on recombination centres in piezoelectric luminophores. Czechoslovak Journal of Physics, 16, 520–524.

    Article  Google Scholar 

  35. Chudacek, I. (1967). Kinetics of triboluminescence of zinc sulphide I. Czechoslovak Journal of Physics, 17, 34–42.

    Article  Google Scholar 

  36. Chandra, B. P., Bagri, A. K., & Chandra, V. K. (2010). Mechanoluminescence response to the plastic flow of coloured alkali halide crystals. Journal of Luminescence, 130, 309–314.

    Article  Google Scholar 

  37. Allison, S. W., & Gillies, G. T. (1997). Remote thermometry with thermographic phosphors instrumentation and applications. The Review of Scientific Instruments, 68, 2615–2650.

    Article  Google Scholar 

  38. Chandra, B. P., Baghel, R. N., Singh, P. K., & Luka, A. K. (2009). Deformation-induced excitation of the luminescence centres in coloured alkali halide crystals. Radiation Effects and Defects in Solids, 164, 500–507.

    Article  Google Scholar 

  39. Chandra, B. P., Singh, S., Ojha, B., & Shrivastava, R. G. (1996). Mobile interstitial model and mobile electron model of mechano-induced luminescence in coloured alkali halide crystals. Pramana: Journal of Physics, 46, 127–143.

    Article  Google Scholar 

  40. Molotskii, M. I., Poletaev, A. V., & Shmurak, S. Z. (1989). Dislocation-induced sensibilization of photoexoelectronic emission. Fizika Tverdogo Tela, 31, 14–20.

    Google Scholar 

  41. Chakravarty, A., & Phillipson, T. E. (2004). Triboluminescence and the potential of fracture surfaces. Journal of Physics D: Applied Physics, 37, 2175–2180.

    Article  Google Scholar 

  42. Destriau, G. (1936). Recherches sur les scintillations des sulfures de zinc aux rayons@, R. Bussière.

    Google Scholar 

  43. Shionoya, S., Yen, W. M., & Hase, T. (1999). Phosphor handbook. Boca Raton, FL: CRC Press.

    Google Scholar 

  44. Hurt, C. R., Mcavoy, N., Bjorklund, S., & Filipescu, N. (1966). High intensity triboluminescence in europium tetrakis (dibenzoylmethide)-triethylammonium. Nature, 212, 179–180.

    Article  Google Scholar 

  45. Hollerman, W. A., Fontenot, R. S., Bhat, K. N., Aggarwal, M. D., Guidry, C. J., & Nguyen, K. M. (2012). Comparison of triboluminescent emission yields for 27 luminescent materials. Optical Materials, 34, 1517–1521.

    Article  Google Scholar 

  46. Olawale, D. O., Dickens, T., Lim, A., Okoli, O., Wang, B., & Sobanjo, J. O. (2010). Characterization of the triboluminescence (TL) performance of ZnS:Mn under repeated mechanical loading for smart optical damage sensor system. NDE/NDT for highways and bridges: Structural materials and technology (SMT) 2010. New York, USA: American Society of Non-Destructive Testing (ASNT).

    Google Scholar 

  47. Sage, I., Humberstone, L., Oswald, I., Lloyd, P., & Bourhill, G. (2001). Getting light through black composites: Embedded triboluminescent structural damage sensors. Smart Materials and Structures, 10, 332–337.

    Article  Google Scholar 

  48. Womack, F. N., Goedeke, S. M., Bergeron, N. P., Hollerman, W. A., & Allison, S. W. (2004). Measurement of triboluminescence and proton half brightness dose for ZnS:Mn. IEEE Transactions on Nuclear Science, 51, 1737–1741.

    Article  Google Scholar 

  49. Xu, C. N., Watanabe, T., Akiyama, M., & Zheng, X. G. (1999). Preparation and characteristics of highly triboluminescent ZnS film. Materials Research Bulletin, 34, 1491–1500.

    Article  Google Scholar 

  50. Chandra, B. P., & Zink, J. I. (1980). Triboluminescence and the dynamics of crystal fracture. Physical Review B, 21, 816–826.

    Article  Google Scholar 

  51. Kim, J. S., Kwon, Y. N., Shin, N., & Sohn, K. S. (2007). Mechanoluminescent SrAl2O4: Eu, Dy phosphor for use in visualization of quasidynamic crack propagation. Applied Physics Letters, 90, 241916.

    Article  Google Scholar 

  52. Sohn, K. S., Seo, S. Y., Kwon, Y. N., & Park, H. D. (2002). Direct observation of crack tip stress field using the mechanoluminescence of SrAl2O4:(Eu, Dy, Nd). Journal of the American Ceramic Society, 85, 712–714.

    Article  Google Scholar 

  53. Xu, C. N., Zheng, X. G., Akiyama, M., Nonaka, K., & Watanabe, T. (2000). Dynamic visualization of stress distribution by mechanoluminescence image. Applied Physics Letters, 76, 179–181.

    Article  Google Scholar 

  54. Sage, I., Badcock, R., Humberstone, L., Geddes, N., Kemp, M., & Bourhill, G. (1999). Triboluminescent damage sensors. Smart Materials and Structures, 8, 504–510.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David O. Olawale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Olawale, D.O., Fontenot, R.S., Shohag, M.A.S., Okoli, O.O.I. (2016). Introduction to Triboluminescence. In: Olawale, D., Okoli, O., Fontenot, R., Hollerman, W. (eds) Triboluminescence. Springer, Cham. https://doi.org/10.1007/978-3-319-38842-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-38842-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-38841-0

  • Online ISBN: 978-3-319-38842-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics