Skip to main content

What Have We Learned About Giftedness and Creativity? An Overview of a Five Years Journey

  • Chapter
  • First Online:
Creativity and Giftedness

Part of the book series: Advances in Mathematics Education ((AME))

Abstract

The aim of this chapter is to offer an overview of a series of studies conducted at the University of Cyprus, regarding the definition and identification of mathematically gifted students, the relation between mathematical creativity, practical and analytical abilities, as well as the relation between giftedness, creativity and other cognitive factors such as, intelligence and cognitive styles. During our research in the field of giftedness and creativity we developed material for nurturing primary school mathematically gifted students and also explored the possibilities that technology may offer in the development of mathematical creativity. Although our research is still evolving, this chapter offers a glimpse of some of our most important findings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Shabatat, A. (2013). A review of the contemporary concepts of giftedness and talent. The International Interdisciplinary Journal of Education, 2(12). Retrieved from search.shamaa.org

  • Anderson, K. L., Casey, M. B., Thompson, W. L., Burrage, M. S., Pezaris, E., & Kosslyn, S. M. (2008). Performance on middle school geometry problems with geometry clues matched to three different cognitive styles. Mind, Brain, and Education, 2(4), 188–197.

    Article  Google Scholar 

  • Bahar, A. K., & Maker, C. J. (2011). Exploring the relationship between mathematical creativity and mathematical achievement. Asia-Pacific Journal of Gifted and Talented Education, 3(1), 33–48.

    Google Scholar 

  • Baran, G., Erdogan, S., & Cakmak, A. (2011). A study on the relationship between six-year-old children’s creativity and mathematical ability. International Education Studies, 4(1), 105–111.

    Article  Google Scholar 

  • Betz, J. A. (1996). Computer games: Increase learning in an interactive multidisciplinary environment. Journal of Technology Systems, 24(2), 195–205.

    Article  Google Scholar 

  • Birch, J. W. (1984). Is any identification procedure necessary? Gifted Child Quarterly, 28(4), 157–161.

    Article  Google Scholar 

  • Blazhenkova, O., & Kozhevnikov, M. (2009). The new object-spatial-verbal cognitive style model: Theory and measurement. Applied Cognitive Psychology, 23(5), 638–663.

    Article  Google Scholar 

  • Chamberlin, S. A., & Mann E. L. (2014). A new model of creativity in mathematical problem solving. In G. Howell, L. Sheffield, & R. Leikin (Eds.), Proceedings of the 8th conference of MCG International Group for Mathematical Creativity and Giftedness (pp. 35–40). University of Denver: International Group for Mathematical Creativity and Giftedness.

    Google Scholar 

  • Cleanthous, E., Pitta-Pantazi, D., Christou, C., Kontoyianni, K., & Kattou, M. (2010). What are the differences between high IQ/low creativity students and low IQ/high creativity students in mathematics? In M. Avotina, D. Bonka, H. Meissner, L. Sheffield, & E. Velikova (Eds.), Proceedings of the 6th International Conference on Creativity in Mathematics Education and the Education of Gifted Students (pp. 52–55). Riga: International Group for Mathematical Creativity and Giftedness (MCG).

    Google Scholar 

  • Clements, D. H. (1995). Teaching creativity with computers. Educational Psychology Review, 7(2), 141–161. doi:10.1007/BF02212491.

    Article  Google Scholar 

  • Coleman, M. R. (2003). The identification of students who are gifted. (ERIC Digest #E644) The ERIC clearinghouse on disabilities and gifted education. Retrieved, from http://ericec.org/digests/e644.html

  • Csikszentmihalyi, M., & Wolfe, R. (2000). New conceptions and research approach to creativity. Implications of a systems perspective for creativity in education. In K. A. Heller, F. J. Monk, R. J. Sternberg, & R. F. Subotnik (Eds.), International handbook of giftedness and talent (pp. 81–94). New York: Elsevier.

    Google Scholar 

  • Davis, G. A., & Rimm, S. B. (2004). Education of the gifted and talented (5th ed.). Boston: Allyn & Bacon.

    Google Scholar 

  • Demetriou, A., Christou, C., Spanoudis, G., & Platsidou, M. (2002). The development of mental processing: Efficiency, working memory and thinking. Monographs of the Society for Research in Child Development, 67(1, Serial No. 268). Retrieved from http://www.wiley.com/bw/journal.asp?ref = 0037-976x

  • Dodge, B. (1991). Computers and creativity: Tools, tasks, and possibilities. Communicator: The Journal of the California Association for the Gifted, 21(1), 5–8.

    Google Scholar 

  • Dunham, P., & Dick, T. (1994). Research on graphing calculators. Mathematics Teacher, 87, 440–445. Retrieved from http://www.nctm.org/eresources/journal_home.asp?journal_id = 2

  • Ervynck, G. (1991). Mathematical creativity. In D. Tall (Ed.), Advanced mathematical thinking (pp. 42–53). Dordrecht: Kluwer.

    Google Scholar 

  • Gagné, F. (1991). Toward a differentiated model of giftedness and talent. In N. Colangelo & G. A. Davis (Eds.), Handbook of gifted education (pp. 65–80). Boston: Allyn and Bacon.

    Google Scholar 

  • Gagné, F. (2003). Transforming gifts into talents: The DMGT as a developmental theory. In N. Colangelo & G. A. Davis (Eds.), Handbook of gifted education (3rd ed.). Boston: Allyn and Bacon.

    Google Scholar 

  • Gagné, F. (2005). From gifts to talents: The DMGT as a developmental model. In R. J. Sternberg & J. E. Davidson (Eds.), Conceptions of giftedness (2nd ed., pp. 98–119). New York, NY: Cambridge University Press.

    Chapter  Google Scholar 

  • Gardner, H. (1991). Multiple intelligences. New York: Free Press.

    Google Scholar 

  • Gardner, H. (1993). Creating minds: An anatomy of creativity seen through the lives of Freud, Einstein, Picasso, Stravinsky, Eliot, Graham, and Gandhi. New York: Basic Books.

    Google Scholar 

  • Getzels, J. W., & Jackson, P. J. (1962). Creativity and intelligence: Explorations with gifted students. New York: John Wiley and Sons, Inc.

    Google Scholar 

  • Gil, E., Ben-Zvi, D., & Apel, N. (2007). What is hidden beyond the data? Helping young students to reason and argue about some wider universe. In D. Pratt & J. Ainley (Eds.), Proceedings of the fifth international research forum on statistical reasoning, thinking and literacy: Reasoning about statistical inference: Innovative ways of connecting chance and data (pp. 1–26). UK: University of Warwick. Retrieved from http://srtl.stat.auckland.ac.nz/srtl5/presentations

  • Guilford, J. P. (1959). Traits of creativity. In H. H. Anderson (Ed.), Creativity and its cultivation (pp. 142–161). (Reprinted in P. E. Vernon, Ed., 1970, Creativity, pp. 167–188, Penguin Books).

    Google Scholar 

  • Haylock, D. (1987). A framework for assessing mathematical creativity in school children. Educational Studies in Mathematics, 18(1), 59–74.

    Article  Google Scholar 

  • Haylock, D. (1997). Recognizing mathematical creativity in schoolchildren. ZDM – The International Journal on Mathematics Education, 29(3), 68–74.

    Article  Google Scholar 

  • Hoeflinger, M. (1998). Developing mathematically promising students. Roeper Review, 20(4), 244–247.

    Article  Google Scholar 

  • Hollingworth, L. S. (1942). Children above 180 IQ Stanford-Binet: Origin and development. Yonkers-on-Hudson: World Book.

    Book  Google Scholar 

  • Iowa Department of Education. (1989). A guide to developing higher order thinking across the curriculum. Des Moines: Department of Education. Retrieved from ERIC database (ED 306 550).

    Google Scholar 

  • Kattou, M., Kontoyianni, K., Pitta-Pantazi, D., Christou, C. (2011). Does mathematical creativity differentiate mathematical ability? In M. Pytlak, T. Rowland, & E. Swoboda (Eds.), Proceedings of the seventh conference of the European Research in Mathematics Education (Working group 7: Mathematical potential, creativity and talent) (pp. 1056–1065). Rzeszów: CERME.

    Google Scholar 

  • Kattou, M., Kontoyianni, K., Pitta-Pantazi, D., & Christou, C. (2013). Connecting mathematical creativity to mathematical ability. ZDM – The International Journal on Mathematics Education, 45(2), 167–181. doi:10.1007/s11858-012-0467-1.

    Article  Google Scholar 

  • Kirton, M. J. (Ed.). (1989). Adaptors and innovators: Styles of creativity and problem solving. London: Routledge.

    Google Scholar 

  • Klavir, R., & Gorodetsky, M. (2009). On excellence and creativity: A study of gifted and expert students. In R. Leikin, A. Berman, & B. Koichu (Eds.), Creativity in mathematics and the education of gifted students (pp. 221–242). Rotterdam: Sense Publishers.

    Google Scholar 

  • Kontoyianni, K., Kattou, M., Pitta-Pantazi, D., & Christou, C. (2011). Entering the world of mathematically gifted. Paper presented at the 19th biennial world conference of the WCGTC. Prague, Czech Republic.

    Google Scholar 

  • Kontoyianni, K., Kattou, M., Pitta-Pantazi, D., & Christou, C. (2013). Integrating mathematical abilities and creativity in the assessment of mathematical giftedness. Psychological Assessment and Test Modeling, 55(3), 289–315.

    Google Scholar 

  • Kozhevnikov, M. (2007). Cognitive styles in the context of modern psychology: Toward an integrated framework of cognitive style. Psychological Bulletin, 133(3), 464–481.

    Article  Google Scholar 

  • Kozhevnikov, M., Kosslyn, S., & Shephard, J. (2005). Spatial versus object visualizers: A new characterization of visual cognitive style. Memory and Cognition, 33(4), 710–726.

    Article  Google Scholar 

  • Krutetskii, V. A. (1976). The psychology of mathematical abilities in schoolchildren. Chicago: University of Chicago Press.

    Google Scholar 

  • Kunzdorf, R. (1982). Mental images, appreciation of grammatical patterns, and creativity. Journal of Mental Imagery, 6, 183–202.

    Google Scholar 

  • Leikin, R. (2007). Habits of mind associated with advanced mathematical thinking and solution spaces of mathematical tasks. In D. Pitta-Pantazi & G. Philippou (Eds.), Proceedings of the fifth conference of the European Society for Research in Mathematics Education – CERME-5 (pp. 2330–2339). http://ermeweb.free.fr/Cerme5.pdf

  • Leikin, R. (2008). Teaching mathematics with and for creativity: An intercultural perspective. In P. Ernest, B. Greer, & B. Sriraman (Eds.), Critical issues in mathematics education (pp. 39–43). Charlotte: Information Age Publishing Inc. & The Montana Council of Teachers of Mathematics.

    Google Scholar 

  • Leikin, R., & Pitta-Pantazi, D. (2013). Creativity and mathematics education: Overview on the state-of-art. ZDM – The International Journal on Mathematics Education, 45(2), 159–166. doi:10.1007/s11858-012-0459-1.

    Article  Google Scholar 

  • Lev-Zamir, H., & Leikin, R. (2011). Creative mathematics teaching in the eye of the beholder: Focusing on teachers’ conceptions. Research in Mathematics Education, 13, 17–32.

    Article  Google Scholar 

  • Lohman, D. F. (2009). Identifying academically talented students: Some general principles, two specific procedures. In L. V. Shavinina (Ed.), International handbook on giftedness (pp. 971–998). Amsterdam: Springer Science and Business Media.

    Chapter  Google Scholar 

  • Loveless, A. (2003). Creating spaces in the primary curriculum: ICT in creative subjects. The Curriculum Journal, 14(1), 5–21.

    Article  Google Scholar 

  • Mann, E. (2005). Mathematical creativity and school mathematics: Indicators of mathematical creativity in middle school students (Doctoral dissertation). Retrieved from www.gifted.uconn.edu/siegle/Dissertations/Eric%20Mann.pdf

  • Mann, E. (2006). Creativity: The essence of mathematics. Journal for the Education of the Gifted, 30(2), 236–260. doi:10.4219/jeg-2006-264.

    Google Scholar 

  • Martinsen, Ø., & Kaufmann, G. (1999). Cognitive style and creativity. In M. A. Runco & S. R. Pritzker (Eds.), Encyclopedia of creativity (Vol. 1, pp. 273–282). San Diego: Academic.

    Google Scholar 

  • Mevarech, Z. R., & Kramarski, B. (1992). How and how much can cooperative logo environments enhance creativity and social relationships? Learning and Instruction, 2(3), 259–274. doi:10.1016/0959-4752(92)90012-B.

    Article  Google Scholar 

  • Milgram, R., & Hong, E. (2009). Talent loss in mathematics: Causes and solutions. In R. Leikin, A. Berman, & B. Koichu (Eds.), Creativity in mathematics and the education of gifted students (pp. 149–163). Rotterdam: Sense Publishers.

    Google Scholar 

  • Nakakoji, K., Yamamoto, Y., & Ohira, M. (1999). A framework that supports collective creativity in design using visual images. In E. Edmonds & L. Candy (Eds.), Proceedings of the 3rd Conference on Creativity and Cognition (pp. 166–173). New York: ACM Press.

    Google Scholar 

  • National Advisory Committee on Creative and Cultural Education (NACCCE). (1999). All our futures: Creativity, culture and education. London: DfES.

    Google Scholar 

  • Pardamean, B., & Evelin, (2014). Enhancement of creativity through logo programming. American Journal of Applied Sciences, 11(4), 528–533.

    Google Scholar 

  • Pehkonen, E. (1997). The state-of-art in mathematical creativity. ZDM – The International Journal on Mathematics Education, 29(3), 63–67. doi:10.1007/s11858-997-0001-z.

    Article  Google Scholar 

  • Pelczer, I., & Rodríguez, F. G. (2011). Creativity assessment in school settings through problem posing tasks. The Montana Mathematics Enthusiast, 8(1&2), 383–398. Retrieved from http://www.math.umt.edu/tmme/

  • Piirto, J. (1998). Themes in the lives of successful contemporary U.S. women creative writers. Roeper Review, 21, 60–70.

    Article  Google Scholar 

  • Pitta-Pantazi, D., & Christou, C. (2010). Spatial versus object visualisation: The case of mathematical understanding in three-dimensional arrays of cubes and nets. International Journal of Educational Research, 49(2–3), 102–114. doi:10.1016/j.ijer.2010.10.001.

    Article  Google Scholar 

  • Pitta-Pantazi, D., Christou, C., & Sophocleous, P. (2010). Analytical, practical and creative abilities: The case of nets and three-dimensional arrays of cubes. Mediterranean Journal for Research in Mathematics Education, 9(2), 57–73.

    Google Scholar 

  • Pitta-Pantazi, D., Christou, C., Kontoyianni, K., & Kattou, M. (2011). A model of mathematical giftedness: Integrating natural, creative and mathematical abilities. Canadian Journal of Science, Mathematics, and Technology Education, 11(1), 39–54. doi:10.1080/14926156.2011.548900.

    Article  Google Scholar 

  • Pitta-Pantazi, D., Christou, C., Kattou, M., & Kontoyianni, K. (2012). Identifying mathematically gifted students. In R. Leikin, B. Koichu, & A. Berman (Eds.), Proceedings of the international workshop of Israel Science Foundation: Exploring and advancing mathematical abilities in secondary school achievers (pp. 83–90). Haifa: University of Haifa.

    Google Scholar 

  • Pitta-Pantazi, D., Sophocleous, P., & Christou, C. (2013). Spatial visualizers, object visualizers and verbalizers: Their mathematical creative abilities. ZDM – The International Journal on Mathematics Education, 45(2), 199–213. doi:10.1007/s11858-012-0475-1.

    Article  Google Scholar 

  • Preckel, F., Holling, H., & Wiese, M. (2006). Relationship of intelligence and creativity in gifted and non-gifted students: An investigation of threshold theory. Personality and Individual Differences, 40(1), 159–170.

    Article  Google Scholar 

  • Renzulli, J. S. (1978). What makes giftedness? Reexamining a definition. Phi Delta Kappan, 60(3), 180–184. Retrieved from http://www.pdkintl.org/kappan/index.htm

  • Riding, R. J. (1997). On the nature of cognitive style. Educational Psychology, 17, 29–50.

    Article  Google Scholar 

  • Ripple, R. E., & May, F. B. (1962). Caution in comparing creativity and IQ. Psychological Reports, 10, 229–230.

    Article  Google Scholar 

  • Sak, U., & Maker, C. J. (2006). Developmental variations in children’s creative mathematical thinking as a function of schooling, age, and knowledge. Creativity Research Journal, 18(3), 279–291.

    Article  Google Scholar 

  • Salvia, J., & Ysseldyke, J. E. (2001). Assessment (8th ed.). Boston: Houghton-Mifflin.

    Google Scholar 

  • Shavinina, L. V. (2009). A new approach to the identification of intellectually gifted individuals. In L. V. Shavinina (Ed.), International handbook on giftedness (pp. 1017–1031). Amsterdam: Springer Science and Business Media.

    Chapter  Google Scholar 

  • Sheffield, L. (2009). Developing mathematical creativity-questions may be the answer. In R. Leikin, A. Berman, & B. Koichu (Eds.), Creativity in mathematics and the education of gifted students. Rotterdam: Sence Publishers.

    Google Scholar 

  • Shriki, A. (2010). Working like real mathematicians: Developing prospective teachers’ awareness of mathematical creativity through generating new concepts. Educational Studies in Mathematics, 73(2), 159–179.

    Article  Google Scholar 

  • Silver, E. A. (1997). Fostering creativity though instruction rich mathematical problem solving and problem posing. International Reviews on Mathematical Education, 29(3), 75–80. doi:10.1007/s11858-997-0003-x.

    Google Scholar 

  • Silverman, L. K. (1991). Leta Hollingworth’s educational principles for the gifted. Satorian (Nebraska Association for Gifted Children Journal), 6(4), 11–17.

    Google Scholar 

  • Sinclair, N., de Freitas, E., & Ferrara, F. (2013). Virtual encounters: The murky and furtive world of mathematical inventiveness. ZDM – The International Journal on Mathematics Education, 45(2), 239–252. doi:10.1007/s11858-012-0465-3.

    Article  Google Scholar 

  • Sophocleous, P., & Pitta-Pantazi, D. (2011). Creativity in three-dimensional geometry: How an interactive 3D-geometry software environment enhance it? In M. Pytlak, T. Rowland, & E. Swoboda (Eds.), Proceedings of seventh conference of the European Research in Mathematics Education (pp. 1143–1153). Rzeshów, Poland: University of Rzeszów.

    Google Scholar 

  • Sriraman, B. (2005). Are giftedness and creativity synonyms in mathematics? An analysis of constructs within the professional and school realms. The Journal of Secondary Gifted Education, 17, 20–36.

    Google Scholar 

  • Sriraman, B. (2008). Are mathematical giftedness and mathematical creativity synonyms? A theoretical analysis of constructs. In B. Sriraman (Ed.), Creativity, giftedness, and talent development in mathematics (pp. 85–112). Charlotte: Information Age Publishing, INC.

    Google Scholar 

  • Sriraman, B. (2009). The characteristics of mathematical creativity. ZDM – The International Journal on Mathematics Education, 41, 13–27.

    Article  Google Scholar 

  • Srivastava, S., & Thomas, A. (1991). Creativity of pre-school childreneffect of sex, age, birth order and intelligence. Journal of Psychological Researches, 36(2), 92–98.

    Google Scholar 

  • Stanley, J. C. (1990). Leta Hollingworth’s contributions to above-level testing of the gifted. Roeper Review, 12(3), 166–171.

    Article  Google Scholar 

  • Sternberg, R. J. (1985). Beyond IQ: A triarchic theory of human intelligence. New York: Cambridge University Press.

    Google Scholar 

  • Sternberg, R. J. (1997). Successful intelligence. New York: Plume.

    Google Scholar 

  • Sternberg, R. J. (1999). Handbook of creativity. New York: Cambridge University Press.

    Google Scholar 

  • Sternberg, R. J. (2003). A broad view of intelligence: The theory of successful intelligence. Consulting Psychology Journal: Practice and Research, 55(3), 139–154.

    Article  Google Scholar 

  • Sternberg, R. J. (2005). The theory of successful intelligence. Revista Interamericana de Psicologia/Interamerican Journal of Psychology, 39(2), 189–202.

    Google Scholar 

  • Sternberg, R. (2012). The assessment of creativity: An investment-based approach. Creativity Research Journal, 24(1), 3–12. doi:10.1080/10400419.2012.652925

  • Sternberg, R. J., & Davidson, J. E. (Eds.). (1986). Conceptions of giftedness. New York: Cambridge University Press.

    Google Scholar 

  • Sternberg, R. J., & Lubart, T. I. (1995). Defying the crowd: Cultivating creativity in a culture of conformity. New York: Free Press.

    Google Scholar 

  • Sternberg, R. J., & O’Hara, L. A. (1999). Creativity and intelligence. In R. J. Sternberg (Ed.), Handbook of creativity (pp. 251–272). Cambridge, MA: Cambridge University Press.

    Google Scholar 

  • Sternberg, R. J., & Grigorenko, E. L. (2004). Successful intelligence in the classroom. Theory Into Practice, 43(4), 274–280.

    Article  Google Scholar 

  • Sternberg, R. J., & Davidson, J. (Eds.). (2005). Conceptions of giftedness (2nd ed.). New York: Cambridge University Press.

    Google Scholar 

  • Sternberg, R. J., Ferrari, M., Clinkenbeard, P., & Grigorenko, E. L. (1996). Identification, instruction, and assessment of gifted children: A construct validation of a triarchic model. Gifted Child Quarterly, 40, 129–137.

    Article  Google Scholar 

  • Sternberg, R. J., Grigorenko, E. L., Ferrari, M., & Clinkenbeard, P. (1999). A triarchic analysis of an aptitude-treatment interaction. European Journal of Psychological Assessment, 15, 1–11.

    Article  Google Scholar 

  • Sternberg, R. J., Castejon, J. L., Prieto, M. D., Hautamaki, J., & Grigorenko, E. L. (2001). Confirmatory factor analysis of the Sternberg Triarchic Ability Test (multiple-choice items) in three international samples: An empirical test of the triarchic theory of intelligence. European Journal of Psychological Assessment, 17, 1–16.

    Article  Google Scholar 

  • Sternberg, R. J., Lipka, J., Newman, T., Wildfeuer, S., & Grigorenko, L. (2006). Triarchically-based instruction and assessment of sixth-grade mathematics in a Yup’ik cultural setting in Alaska. Gifted and Talented International, 21(2), 9–19.

    Article  Google Scholar 

  • Subhi, T. (1999). The impact of logo on gifted children’s achievement and creativity. Journal of Computer Assisted Learning, 15(2), 98–108. doi:10.1046/j.1365-2729.1999.152082.x.

    Article  Google Scholar 

  • Tannenbaum, A. J. (2003). Nature and nurture of giftedness. In N. Colangelo & G. A. Davis (Eds.), Handbook of gifted education (3rd ed., pp. 45–59). Boston: Allyn and Bacon.

    Google Scholar 

  • Terman, L. M. (1916). The measurement of intelligence. Boston: Houghton Mifflin.

    Book  Google Scholar 

  • Terman, L. (1924). The physical and mental traits of gifted children. In G. M. Whipple (Ed.), Report of the society’s committee on the education of gifted children (pp. 157–167). The twenty third yearbook of the National Society for the Study of Education. Bloomington: Public School Publishing.

    Google Scholar 

  • Torrance, E. P. (1974). The Torrance tests of creative thinking-norms-technical manual research edition-verbal tests, forms A and B- figural tests, forms A and B. Princeton: Personnel Press.

    Google Scholar 

  • Torrance, E. P. (1994). Creativity: Just wanting to know. Pretoria: Benedic Books.

    Google Scholar 

  • Torrance, E. P. (1995). The ‘beyonders’ in why fly? A philosophy of creativity. Norwood: Ablex.

    Google Scholar 

  • Usiskin, Z. (2000). The development into the mathematically talented. Journal of Secondary Gifted Education, 11, 152–162.

    Google Scholar 

  • Van Tassel-Baska, J. (2000). Theory and research on curriculum development for the gifted. In K. A. Heller, F. J. Monk, R. J. Sternberg, & R. F. Subotnik (Eds.), International handbook of giftedness and talent (2nd ed., pp. 345–366). Amsterdam: Elsevier.

    Google Scholar 

  • Winner, E. (1997). Exceptionally high intelligence and schooling. American Psychologist, 52(10), 1070–1081.

    Article  Google Scholar 

  • Woodman, R. W., & Schoenfeldt, L. F. (1990). An interactionist model of creative behavior. Journal of Creative Behavior, 24(4), 279–290.

    Article  Google Scholar 

  • Yang, Y. C., & Chin, W. K. (1996). Motivational analysis on the effects of type of instructional control on learning from computer-based instruction. Journal of Educational Technology Systems, 25(1), 25–35.

    Article  Google Scholar 

  • Yushau, B., Mji, A., & Wessels, D. C. J. (2005). The role of technology in fostering creativity in the teaching and learning of mathematics. Pythagoras, 62, 12–22.

    Google Scholar 

  • Ziegler, A. (2009). Research on giftedness in the 21st century. In L. V. Shavinina (Ed.), International handbook on giftedness (pp. 1509–1524). Amsterdam: Springer Science and Business Media.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Demetra Pitta-Pantazi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pitta-Pantazi, D. (2017). What Have We Learned About Giftedness and Creativity? An Overview of a Five Years Journey. In: Leikin, R., Sriraman, B. (eds) Creativity and Giftedness. Advances in Mathematics Education. Springer, Cham. https://doi.org/10.1007/978-3-319-38840-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-38840-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-38838-0

  • Online ISBN: 978-3-319-38840-3

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics