Skip to main content

Magnification of Cholesterol-Induced Membrane Resistance on the Tissue Level: Implications for Hypoxia

  • Conference paper
  • First Online:
Oxygen Transport to Tissue XXXVIII

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 923))

Abstract

High cellular membrane cholesterol is known to generate membrane resistance and reduce oxygen (O2) permeability. As such, cholesterol may contribute to the Warburg effect in tumor cells by stimulating intracellular hypoxia that cannot be detected from extracellular oxygen measurements. We probe the tissue-level impact of the phenomenon, asking whether layering of cells can magnify the influence of cholesterol, to modulate hypoxia in relation to capillary proximity. Using molecular dynamics simulations, we affirm that minimally hydrated, adjacent lipid bilayers have independent physical behavior. Combining this insight with published experimental data, we predict linearly increasing impact of membrane cholesterol on oxygen flux across cells layered in tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Khan N, Shen J, Chang TY et al (2003) Plasma membrane cholesterol: a possible barrier to intracellular oxygen in normal and mutant CHO cells defective in cholesterol metabolism. Biochemistry 42(1):23–29

    Article  CAS  PubMed  Google Scholar 

  2. Steinbach JH, Blackshear PL, Varco RL, Buchwald H (1974) High blood cholesterol reduces in vitro blood oxygen delivery. J Surg Res 16(2):134–139

    Article  CAS  PubMed  Google Scholar 

  3. Menchaca HJ, Michalek VN, Rohde TD et al (1998) Decreased blood oxygen diffusion in hypercholesterolemia. Surgery 124(4):692–698

    Article  CAS  PubMed  Google Scholar 

  4. Widomska J, Raguz M, Subczynski WK (2007) Oxygen permeability of the lipid bilayer membrane made of calf lens lipids. Biochim Biophys Acta 1768(10):2635–2645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Subczynski WK, Hyde JS, Kusumi A (1989) Oxygen permeability of phosphatidylcholine-cholesterol membranes. Proc Natl Acad Sci 86(12):4474–4478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Galea AM, Brown AJ (2009) Special relationship between sterols and oxygen: were sterols an adaptation to aerobic life? Free Radic Biol Med 47(6):880–889

    Article  CAS  PubMed  Google Scholar 

  7. Salomon-Ferrer R, Götz AW, Poole D et al (2013) Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald. J Chem Theory Comput 9(9):3878–3888

    Article  CAS  PubMed  Google Scholar 

  8. Case DA, Berryman JT, Betz RM et al (2015) AMBER 2015. University of California, San Francisco

    Google Scholar 

  9. Case DA, Darden TA, Cheatham TE III et al (2012) AMBER 12. University of California, San Francisco

    Google Scholar 

  10. Dickson CJ, Madej BD, Skjevik AA et al (2014) Lipid14: the Amber lipid force field. J Chem Theory Comput 10(2):865–879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Madej B, Gould IR, Walker RC (2015) A parameterization of cholesterol for mixed lipid bilayer simulation within the Amber Lipid14 force field. J Phys Chem B 119(38):12424–12435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Weast RC (ed) (1986) CRC Handbook of Chemistry and Physics, 67th edn. The Chemical Rubber Co., Boca Raton

    Google Scholar 

  13. Herzberg G, Spinks JWT (1950) Molecular Spectra and Molecular Structure: Diatomic Molecules, vol 1. van Nostrand, New York

    Google Scholar 

  14. Skjevik AA, Madej BD, Walker RC, Teigen K (2012) LIPID11: a modular framework for lipid simulations using Amber. J Phys Chem B 116(36):11124–11136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jo S, Kim T, Iyer VG, Im W (2008) CHARMM-GUI: a web-based graphical user interface for CHARMM. J Comput Chem 29(11):1859–1865

    Article  CAS  PubMed  Google Scholar 

  16. Jo S, Lim JB, Klauda JB, Im W (2009) CHARMM-GUI membrane builder for mixed bilayers and its application to yeast membranes. Biophys J 97(1):50–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dickson CJ, Rosso L, Betz RM et al (2012) GAFFlipid: a General Amber Force Field for the accurate molecular dynamics simulation of phospholipid. Soft Matter 8(37):9617

    Article  CAS  Google Scholar 

  18. Roe DR, Cheatham TE (2013) PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J Chem Theory Comput 9(7):3084–3095

    Article  CAS  PubMed  Google Scholar 

  19. Jorgensen WL, Chandrasekhar J, Madura JD et al (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926

    Article  CAS  Google Scholar 

  20. Ryckaert J-P, Ciccotti G, Berendsen HJ (1977) Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 23(3):327–341

    Article  CAS  Google Scholar 

  21. Berendsen HJC, Postma JPM, van Gunsteren WF et al (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81(8):3684

    Article  CAS  Google Scholar 

  22. Martinez L, Andrade R, Birgin E, Martinez J (2009) Packmol: a package for building initial configurations for molecular dynamics simulations. J Comput Chem 30:2157–2164

    Article  CAS  PubMed  Google Scholar 

  23. Wang Y, Cohen J, Boron WF et al (2007) Exploring gas permeability of cellular membranes and membrane channels with molecular dynamics. J Struct Biol 157(3):534–544

    Article  CAS  PubMed  Google Scholar 

  24. Marrink S-J, Berendsen HJC (1994) Simulation of water transport through a lipid membrane. J Phys Chem 98(15):4155–4168

    Article  CAS  Google Scholar 

  25. Schneck E, Sedlmeier F, Netz RR (2012) Hydration repulsion between biomembranes results from an interplay of dehydration and depolarization. Proc Natl Acad Sci 109(36):14405–14409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dutta A, Popel AS (1995) A theoretical analysis of intracellular oxygen diffusion. J Theor Biol 176(4):433–445

    Article  CAS  PubMed  Google Scholar 

  27. Sidell BD (1998) Intracellular oxygen diffusion: the roles of myoglobin and lipid at cold body temperature. J Exp Biol 201(Pt 8):1119–1128

    CAS  PubMed  Google Scholar 

  28. Ashikawa I, Yin JJ, Subczynski WK et al (1994) Molecular organization and dynamics in bacteriorhodopsin-rich reconstituted membranes: discrimination of lipid environments by the oxygen transport parameter using a pulse ESR spin-labeling technique. Biochemistry 33(16):4947–4952

    Article  CAS  PubMed  Google Scholar 

  29. Kawasaki K, Yin JJ, Subczynski WK et al (2001) Pulse EPR detection of lipid exchange between protein-rich raft and bulk domains in the membrane: methodology development and its application to studies of influenza viral membrane. Biophys J 80(2):738–748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Financial support for this project was provided by the NM-INBRE program, which is funded by National Institutes of Health grant P20GM103451 through NIGMS. Further financial support was generously provided by the Glendorn Foundation. The project used computing resources of the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1053575. We thank Snežna Rogelj for her ongoing inspiration and biological insight, Jeff Altig for helpful conversations, and Ryan Bredin for developing our O2 force field parameters. We gratefully acknowledge Ross Walker and Benjamin Madej for providing advance access to their updated cholesterol force field parameters. Finally, we appreciate the thoughtful review of our manuscript by members of the International Society on Oxygen Transport to Tissue (ISOTT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sally C. Pias .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Shea, R., Smith, C., Pias, S.C. (2016). Magnification of Cholesterol-Induced Membrane Resistance on the Tissue Level: Implications for Hypoxia. In: Luo, Q., Li, L., Harrison, D., Shi, H., Bruley, D. (eds) Oxygen Transport to Tissue XXXVIII. Advances in Experimental Medicine and Biology, vol 923. Springer, Cham. https://doi.org/10.1007/978-3-319-38810-6_6

Download citation

Publish with us

Policies and ethics