Skip to main content

Comparing the Effectiveness of Methods to Measure Oxygen in Tissues for Prognosis and Treatment of Cancer

  • Conference paper
  • First Online:
Book cover Oxygen Transport to Tissue XXXVIII

Abstract

Given the clinical evidence that hypoxic tumors are more resistant to standard therapy and that adjusting therapies can improve the outcomes for the subpopulation with hypoxic tumors, in vivo methods to measure oxygen in tissue have important clinical potential. This paper provides the rationale for and methodological strategies to use comparative effectiveness research to evaluate oximetry for cancer care. Nine oximetry methods that have been used in vivo to measure oxygen in human tumors are evaluated on several clinically relevant criteria to illustrate the value of applying comparative effectiveness to oximetry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vaupel P, Höckel M, Mayer A (2007) Detection and characterization of tumor hypoxia using pO2 histography. Antioxid Redox Signal 9:1221–1236. doi:10.1089/ars.2007.1628

    Article  CAS  PubMed  Google Scholar 

  2. Walsh JC, Lebedev A, Aten E et al (2014) The clinical importance of assessing tumor hypoxia: relationship of tumor hypoxia to prognosis and therapeutic opportunities. Antioxid Redox Signal 21:1516–1554. doi:10.1089/ars.2013.5378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Vaupel P, Mayer A (2007) Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev 26:225–239. doi:10.1007/s10555-007-9055-1

    Article  CAS  PubMed  Google Scholar 

  4. Wilson WR, Hay MP (2011) Targeting hypoxia in cancer therapy. Nat Rev Cancer 11:393–410. doi:10.1038/nrc3064

    Article  CAS  PubMed  Google Scholar 

  5. Menon C, Fraker DL (2005) Tumor oxygenation status as a prognostic marker. Cancer Lett 221:225–235. doi:10.1016/j.canlet.2004.06.029

    Article  CAS  PubMed  Google Scholar 

  6. Bussink J, Kaanders JH, von der Kogel AJ (2002) Tumor hypoxia at the micro-regional level: clinical relevance and predictive value of exogenous and endogenous hypoxic cell markers. Radiother Oncol 67:3–15. doi:10.1016/S0167-8140(03)00011-2

    Article  Google Scholar 

  7. Janssens GO, Rademakers SE, Terhaard CH et al (2012) Accelerated radiotherapy with carbogen and nicotinamide for laryngeal cancer: results of a phase III randomized trial. J Clin Oncol 30:1777–1783. doi:10.1200/JCO.2011.35.9315

    Article  CAS  PubMed  Google Scholar 

  8. Gatsonis C (2010) The promise and realities of comparative effectiveness research. Stat Med 29:1977–1981. doi:10.1002/sim.3936

    Article  PubMed  PubMed Central  Google Scholar 

  9. Goss CH, Tefft N (2013) Comparative effectiveness research—what is it and how does one do it? Paediatr Respir Rev 14:152–156. doi:10.1016/j.prrv.2013.06.006

    PubMed  Google Scholar 

  10. Amstrong K (2012) Methods in comparative effectiveness research. J Clin Oncol 30:4208–4214. doi:10.1200/JCO.2012.42.2659

    Article  Google Scholar 

  11. Holve E, Pittman P (2009) A first look at the volume and cost of comparative effectiveness research in the United States. Academy health. http://www.academyhealth.org/files/filedownloads/ah_monograph_09final7.pdf. Accessed 30 Aug 2015

  12. Tunis SR, Stryer DB, Clancy CM (2003) Practical clinical trials: increasing the value of clinical research for decision making in clinical and health policy. JAMA 290:1624–1632. doi:10.1001/jama.290.12.1624

    Article  CAS  PubMed  Google Scholar 

  13. Epstein R, Teagarden JR (2010) Comparative effectiveness and personalized medicine: evolving together or apart? Health Aff (Millwood) 29:1783–1787. doi:10.1377/hlthaff.2010.0642

    Article  Google Scholar 

  14. O’Connor AM, Llewellyn-Thomas HA, Flood AB (2004) Modifying unwarranted variations in health care: shared decision making using patient decision aids. Health Aff (Millwood) Suppl Variation: VAR63–72. doi:10.1377/hlthaff.var.63

    Google Scholar 

  15. Clinicaltrials.gov (2015) U.S. National Institutes of Health, Rockville. http://www. clinicaltrials.gov. Accessed 25 Aug 2015

    Google Scholar 

  16. Dhani N, Fyles A, Hedley D et al (2015) The clinical significance of hypoxia in human cancers. Semin Nucl Med 45:110–121. doi:10.1053/j.semnuclmed.2014.11.002

    Article  PubMed  Google Scholar 

  17. Koch CJ, Evans SM (2015) Optimizing hypoxia detection and treatment strategies. Semin Nucl Med 45:163–176. doi:10.1053/j.semnuclmed.2014.10.004

    Article  PubMed  PubMed Central  Google Scholar 

  18. Overgaard J (2011) Hypoxic modification of radiotherapy in squamous cell carcinoma of the head and neck—a systematic review and meta-analysis. Radiother Oncol 100:22–32. doi:10.1016/j.radonc.2011.03.004

    Article  PubMed  Google Scholar 

  19. Springett R, Swartz HM (2007) Measurements of oxygen in vivo: overview and perspectives on methods to measure oxygen within cells and tissues. Antioxid Redox Signal 9:1295–1301. doi:10.1089/ars.2007.1620

    Article  CAS  PubMed  Google Scholar 

  20. Swartz HM, Williams BB, Hou H et al. (2015) Direct and repeated clinical measurements of p02 for enhancing cancer therapy and other applications [submitted same issue]. In: Advances in experimental medicine and biology: oxygen transport to tissues XXXVIII. 43rd annual meeting of the International Society on Oxygen Transport to Tissue, Wuhan, China, 11–16 July 2015 (in press)

    Google Scholar 

  21. Nordsmark M, Eriksen JG, Gebski V et al (2007) Differential risk assessments from five hypoxia specific assays: the basis for biologically adapted individualized radiotherapy in advanced head and neck cancer patients. Radiother Oncol 83:389–397. doi:10.1016/j.radonc.2007.04.021

    Article  PubMed  Google Scholar 

  22. Vaupel P (2004) Tumor microenvironmental physiology and its implications for radiation oncology. Semin Radiat Oncol 14(3):198–206, doi:http://dx.doi.org/10.1016/j.semradonc. 2004.04.008

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded in part by a grant from the US National Cancer Institute, National Institutes of Health (PO1CA190193).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ann Barry Flood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Flood, A.B., Satinsky, V.A., Swartz, H.M. (2016). Comparing the Effectiveness of Methods to Measure Oxygen in Tissues for Prognosis and Treatment of Cancer. In: Luo, Q., Li, L., Harrison, D., Shi, H., Bruley, D. (eds) Oxygen Transport to Tissue XXXVIII. Advances in Experimental Medicine and Biology, vol 923. Springer, Cham. https://doi.org/10.1007/978-3-319-38810-6_15

Download citation

Publish with us

Policies and ethics