Skip to main content

Placentation as a Predictor of Feto-Placental Outcome: Effects of Early Nutrition

  • Chapter
  • First Online:
Early Nutrition and Lifestyle Factors
  • 803 Accesses

Abstract

The placenta transfers nutrients, gases, and waste products between maternal and fetal circulations. Placental transfer capacity is determined by a wide range of factors such as placental surface area and thickness, the abundance of transporters, the gradient of concentrations between both maternal and fetal compartments, placental metabolism and utero-placental flows, and other environmental stimuli. Substances need to cross several cellular layers, among them the trophoblast, through different transport mechanisms such as simple or facilitated diffusion or active transport. Early placentation, which is very critical for optimum placental capacity, depends on the extensive remodeling of the maternal uterine vasculature producing low-resistance blood vessels that facilitate the exchange of nutrients and wastes between the mother and the fetus (Zhong et al. 2010). Proper placental development is critical for fetal growth and development (Myatt 2002). The shallow invasion of the spiral arterioles and the maternal decidual stroma by the extravillous trophoblasts (EVTs) results in poor maternal blood flow to the feto-placental unit. Consequently, this reduces oxygen and nutrients’ delivery to the fetus. Concomitantly, ischemia–reperfusion injury may follow inappropriate vasoconstriction of untransformed arteries, increasing oxidative stress, syncytiotrophoblast shedding, and maternal systemic vascular inflammation. All these are important features of preeclampsia (PE). In addition, the compromised placental growth and development may affect fetal growth and development due to the result of insufficient placental transfer of maternal nutrients such as lipids, glucose, amino acids, minerals, and vitamins. There are several other factors that affect the placental transport function such as interrelationships of maternal food intake, availability of nutrients in the maternal circulation, and ability of the placenta to efficiently transport substrates to the fetal circulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aljada, A., O’Connor, L., Fu, Y. Y., & Mousa, S. A. (2008). PPAR gamma ligands, rosiglitazone and pioglitazone, inhibit bFGF- and VEGF-mediated angiogenesis. Angiogenesis, 11, 361–367.

    Article  CAS  PubMed  Google Scholar 

  • Alwasel, S. H., Abotalib, Z., Aljarallah, J. S., Osmond, C., Al Omar, S. Y., Harrath, A., Thornburg, K., & Barker, D. J. (2012). The breadth of the placental surface but not the length is associated with body size at birth. Placenta, 33, 619–622.

    Article  CAS  PubMed  Google Scholar 

  • Barker, D. J., Larsen, G., Osmond, C., Thornburg, K. L., Kajantie, E., & Eriksson, J. G. (2012). The placental origins of sudden cardiac death. International Journal of Epidemiology, 41, 1394–1399.

    Article  PubMed  Google Scholar 

  • Barker, D. J., Osmond, C., Forsen, T. J., Thornburg, K. L., Kajantie, E., & Eriksson, J. G. (2013a). Foetal and childhood growth and asthma in adult life. Acta Paediatrica, 102, 732–738.

    Article  PubMed  Google Scholar 

  • Barker, D., Osmond, C., Grant, S., Thornburg, K. L., Cooper, C., Ring, S., & Davey-Smith, G. (2013b). Maternal cotyledons at birth predict blood pressure in childhood. Placenta, 34, 672–675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barker, D. J., Osmond, C., Thornburg, K. L., Kajantie, E., & Eriksson, J. G. (2011). The lifespan of men and the shape of their placental surface at birth. Placenta, 32, 783–787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barker, D. J., Osmond, C., Thornburg, K. L., Kajantie, E., & Eriksson, J. G. (2013c). The shape of the placental surface at birth and colorectal cancer in later life. American Journal of Human Biology, 25, 566–568.

    Article  PubMed  Google Scholar 

  • Barker, D. J., Thornburg, K. L., Osmond, C., Kajantie, E., & Eriksson, J. G. (2010). The surface area of the placenta and hypertension in the offspring in later life. International Journal of Developmental Biology, 54, 525–530.

    Article  PubMed  PubMed Central  Google Scholar 

  • Basak, S., Das, M. K., & Duttaroy, A. K. (2013). Fatty acid-induced angiogenesis in first trimester placental trophoblast cells: possible roles of cellular fatty acid-binding proteins. Life Sciences, 93, 755–762.

    Article  CAS  PubMed  Google Scholar 

  • Basak, S., & Duttaroy, A. K. (2012). Leptin induces tube formation in first-trimester extravillous trophoblast cells. European Journal of Obstetrics, Gynecology, and Reproductive Biology, 164, 24–29.

    Article  CAS  PubMed  Google Scholar 

  • Basak, S., & Duttaroy, A. K. (2013a). cis-9, trans-11 conjugated linoleic acid stimulates expression of angiopoietin like-4 in the placental extravillous trophoblast cells. Biochimica et Biophysica Acta, 1831, 834–843.

    Article  CAS  PubMed  Google Scholar 

  • Basak, S., & Duttaroy, A. K. (2013b). Effects of fatty acids on angiogenic activity in the placental extravillious trophoblast cells. Prostaglandins, Leukotrienes, and Essential Fatty Acids, 88, 155–162.

    Article  CAS  PubMed  Google Scholar 

  • Burton, G. J., Charnock-Jones, D. S., & Jauniaux, E. (2009). Regulation of vascular growth and function in the human placenta. Reproduction, 138, 895–902.

    Article  CAS  PubMed  Google Scholar 

  • Demir, R., Kayisli, U. A., Seval, Y., Celik-Ozenci, C., Korgun, E. T., Demir-Weusten, A. Y., & Huppertz, B. (2004). Sequential expression of VEGF and its receptors in human placental villi during very early pregnancy: Differences between placental vasculogenesis and angiogenesis. Placenta, 25, 560–572.

    Article  CAS  PubMed  Google Scholar 

  • Demir, A. S., & Talpur, F. N. (2010). Chemoenzymatic conversion of linoleic acid into conjugated linoleic acid. Journal of Agricultural and Food Chemistry, 58, 1646–1652.

    Article  CAS  PubMed  Google Scholar 

  • Elmasri, H., Karaaslan, C., Teper, Y., Ghelfi, E., Weng, M., Ince, T. A., Kozakewich, H., Bischoff, J., & Cataltepe, S. (2009). Fatty acid binding protein 4 is a target of VEGF and a regulator of cell proliferation in endothelial cells. The FASEB Journal, 23, 3865–3873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eriksson, J., Forsen, T., Tuomilehto, J., Osmond, C., & Barker, D. (2000). Fetal and childhood growth and hypertension in adult life. Hypertension, 36, 790–794.

    Article  CAS  PubMed  Google Scholar 

  • Eriksson, J. G., Kajantie, E., Thornburg, K. L., Osmond, C., & Barker, D. J. (2011). Mother’s body size and placental size predict coronary heart disease in men. European Heart Journal, 32, 2297–2303.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gardosi, J., Chang, A., Kalyan, B., Sahota, D., & Symonds, E. M. (1992). Customised antenatal growth charts. Lancet, 339, 283–287.

    Article  CAS  PubMed  Google Scholar 

  • Harding, J. E. (2001). The nutritional basis of the fetal origins of adult disease. International Journal of Epidemiology, 30, 15–23.

    Article  CAS  PubMed  Google Scholar 

  • Johnsen, G. M., Basak, S., Weedon-Fekjaer, M. S., Staff, A. C., & Duttaroy, A. K. (2011). Docosahexaenoic acid stimulates tube formation in first trimester trophoblast cells, HTR8/SVneo. Placenta, 32, 626–632.

    Article  CAS  PubMed  Google Scholar 

  • Kajantie, E., Thornburg, K. L., Eriksson, J. G., Osmond, C., & Barker, D. J. (2010). In preeclampsia, the placenta grows slowly along its minor axis. International Journal of Developmental Biology, 54, 469–473.

    Article  PubMed  Google Scholar 

  • Kang, J. H., Song, H., Yoon, J. A., Park, D. Y., Kim, S. H., Lee, K. J., Farina, A., Cho, Y. K., Kim, Y. N., Park, S. W., Kim, G. J., Shim, S. H., & Cha, D. H. (2011). Preeclampsia leads to dysregulation of various signaling pathways in placenta. Journal of Hypertension, 29, 928–936.

    Article  CAS  PubMed  Google Scholar 

  • Mainigi, M. A., Olalere, D., Burd, I., Sapienza, C., Bartolomei, M., & Coutifaris, C. (2014). Peri-implantation hormonal milieu: Elucidating mechanisms of abnormal placentation and fetal growth. Biology of Reproduction, 90, 26.

    Article  PubMed  Google Scholar 

  • Makris, A., Thornton, C., Thompson, J., Thomson, S., Martin, R., Ogle, R., Waugh, R., Mckenzie, P., Kirwan, P., & Hennessy, A. (2007). Uteroplacental ischemia results in proteinuric hypertension and elevated sFLT-1. Kidney International, 71, 977–984.

    Article  CAS  PubMed  Google Scholar 

  • Massaro, M., Scoditti, E., Carluccio, M. A., Campana, M. C., & DE Caterina, R. (2010). Omega-3 fatty acids, inflammation and angiogenesis: Basic mechanisms behind the cardioprotective effects of fish and fish oils. Cellular and Molecular Biology, 56, 59–82.

    CAS  PubMed  Google Scholar 

  • Maynard, S. E., Moore Simas, T. A., Bur, L., Crawford, S. L., Solitro, M. J., & Meyer, B. A. (2010). Soluble endoglin for the prediction of preeclampsia in a high risk cohort. Hypertension in Pregnancy, 29, 330–341.

    Article  CAS  PubMed  Google Scholar 

  • Moon, E. J., Lee, Y. M., & Kim, K. W. (2003). Anti-angiogenic activity of conjugated linoleic acid on basic fibroblast growth factor-induced angiogenesis. Oncology Reports, 10, 617–621.

    CAS  PubMed  Google Scholar 

  • Murota, S., Kanayasu, T., Nakano-Hayashi, J., & Morita, I. (1991). Involvement of eicosanoids in angiogenesis. Advances in Prostaglandin, Thromboxane, and Leukotriene Research, 21B, 623–626.

    CAS  PubMed  Google Scholar 

  • Myatt, L. (2002). Role of placenta in preeclampsia. Endocrine, 19, 103–111.

    Article  CAS  PubMed  Google Scholar 

  • Pavlov, N., Hatzi, E., Bassaglia, Y., Frendo, J. L., Evain Brion, D., & Badet, J. (2003). Angiogenin distribution in human term placenta, and expression by cultured trophoblastic cells. Angiogenesis, 6, 317–330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roseboom, T. J., Painter, R. C., de Rooij, S. R., van Abeelen, A. F., Veenendaal, M. V., Osmond, C., & Barker, D. J. (2011). Effects of famine on placental size and efficiency. Placenta, 32, 395–399.

    Article  CAS  PubMed  Google Scholar 

  • Rugg-Gunn, P. J. (2012). Epigenetic features of the mouse trophoblast. Reproductive Biomedicine Online, 25, 21–30.

    Article  CAS  PubMed  Google Scholar 

  • Spencer, L., Mann, C., Metcalfe, M., Webb, M., Pollard, C., Spencer, D., Berry, D., Steward, W., & Dennison, A. (2009). The effect of omega-3 FAs on tumour angiogenesis and their therapeutic potential. European Journal of Cancer, 45, 2077–2086.

    Article  CAS  PubMed  Google Scholar 

  • Taki, A., Abe, M., Komaki, M., Oku, K., Iseki, S., Mizutani, S., & Morita, I. (2012). Expression of angiogenesis-related factors and inflammatory cytokines in placenta and umbilical vessels in pregnancies with preeclampsia and chorioamnionitis/funisitis. Congenital Anomalies (Kyoto), 52, 97–103.

    Article  CAS  Google Scholar 

  • Tobin, K. A., Harsem, N. K., Dalen, K. T., Staff, A. C., Nebb, H. I., & Duttaroy, A. K. (2006). Regulation of ADRP expression by long-chain polyunsaturated fatty acids in BeWo cells, a human placental choriocarcinoma cell line. Journal of Lipid Research, 47, 815–823.

    Article  CAS  PubMed  Google Scholar 

  • Torry, D. S., Wang, H. S., Wang, T. H., Caudle, M. R., & Torry, R. J. (1998). Preeclampsia is associated with reduced serum levels of placenta growth factor. American Journal of Obstetrics and Gynecology, 179, 1539–1544.

    Article  CAS  PubMed  Google Scholar 

  • Wang, W., Feng, L., Zhang, H., Hachy, S., Satohisa, S., Laurent, L. C., Parast, M., Zheng, J., & Chen, D. B. (2012). Preeclampsia up-regulates angiogenesis-associated microRNA (i.e., miR-17, -20a, and -20b) that target ephrin-B2 and EPHB4 in human placenta. Journal of Clinical Endocrinology and Metabolism, 97, E1051–E1059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y., & Daaka, Y. (2011). PGE2 promotes angiogenesis through EP4 and PKA Cgamma pathway. Blood, 118, 5355–5364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhong, Y., Tuuli, M., & Odibo, A. O. (2010). First-trimester assessment of placenta function and the prediction of preeclampsia and intrauterine growth restriction. Prenatal Diagnosis, 30, 293–308.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Duttaroy, A.K., Basak, S. (2016). Placentation as a Predictor of Feto-Placental Outcome: Effects of Early Nutrition. In: Early Nutrition and Lifestyle Factors. Springer, Cham. https://doi.org/10.1007/978-3-319-38804-5_1

Download citation

Publish with us

Policies and ethics