Skip to main content

High-Performance Sensing of DNA Hybridization on Surface of Self-organized MWCNT-Arrays Decorated by Organometallic Complexes

  • Conference paper
  • First Online:
Book cover Bioinformatics Research and Applications (ISBRA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 9683))

Included in the following conference series:

  • 1403 Accesses

Abstract

In this paper a high-sensitive capacitive DNA-nanosensor based on spin-dependent polarization effects has been proposed. We demonstrate that the polarization effects of charge-carriers transport in multi-walled carbon nanotubes (MWCNT) decorated by organometallic complexes lead to the surface-resonance-enhanced signals of DNA-hybridization sensor. According to obtained experimental data, such DNA-sensor allows to discover the forming duplex with DNA targets, including single-base-pair-mismatched DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yao, X., Li, X., Toledo, F., Zurita-Lopez, C., Gutova, M., Momand, J., Zhou, F.M.: Sub-attomole oligonucleotide and p53 cDNA determinations via a high-resolution surface plasmon resonance combined with oligonucleotide-capped gold nanoparticle signal amplification. Anal. Biochem. 354, 220–224 (2006)

    Article  Google Scholar 

  2. Lee, K.-L., You, M.-L., Tsai, C.-L., Hung, C.-Y., Hsieh, S.-Y., Wei, P.-K.: Visualization of biosensors using enhanced surface plasmon resonances in capped silver nanostructures. Analyst 141, 974–980 (2016)

    Article  Google Scholar 

  3. Ozin, G.A., Hou, K., Lotsch, B.V., Cademartiri, L., Puzzo, D.P., Scotognella, F., Ghadimi, A., Thomson, J.: Nanofabrication by self-assembly. Mater. Today 12, 12–23 (2009)

    Article  Google Scholar 

  4. Li, H., Tian, J., Wang, L., Zhang, Y., Sun, X.: Multi-walled carbon nanotubes as an effective fluorescent sensing platform for nucleic acid detection. J. Mater. Chem. 21, 824–828 (2011)

    Article  Google Scholar 

  5. Lu, C.-H., Yang, H.-H., Zhu, C.-L., Chen, X., Chen, G.-N.: A graphene platform for sensing biomolecules. Angew. Chem. Int. Ed. 48, 4785–4787 (2009)

    Article  Google Scholar 

  6. Zhang, B., Cui, T.: An ultrasensitive and low-cost graphene sensor based on layer-by-layer nano self-assembly. Appl. Phys. Lett. 98, 073116 (2011)

    Article  Google Scholar 

  7. Zhu, Z., Yang, R., You, M., Zhang, X., Wu, Y., Tan, W.: Single-walled carbon nanotube as an effective quencher. Anal. Bioanal. Chem. 396, 73–83 (2010)

    Article  Google Scholar 

  8. Bansal, J., Singh, I., Bhatnagar, P.K., Mathur, P.C.: DNA sequence detection based on Raman spectroscopy using single walled carbon nanotube. J. Biosci. Bioeng. 115, 438–441 (2013)

    Article  Google Scholar 

  9. Vardevanyan, P.O., Karapetyan, R.A., Parsadanyan, M.A.: Pequliarities of interaction of ethidium bromide with different GC-content DNAs. Biol. J. Armenia 4(62), 6–11 (2010)

    Google Scholar 

  10. Zhizhina, G.P., Oleynik, E.F.: Infrared spectroscopy of nucleic acid. Chem. Usp. 41, 475–511 (1972)

    Google Scholar 

  11. Milinchuk, V.K.: Radiation chemistry. Soros Educ. J. Chem. 6(4), 24–29 (2000)

    Google Scholar 

  12. Doshi, R., Day, P.J.R., Tirelli, N.: Dissolved oxygen alteration of the spectrophotometric analysis and quantification of nucleic acid solutions. Biochem. Soc. Trans. 37(2), 466–470 (2009)

    Article  Google Scholar 

  13. Prousek, J.: Fenton chemistry in biology and medicine. Pure Appl. Chem. 79, 2325–2338 (2007)

    Article  Google Scholar 

  14. Brooker, R.J.: Genetics: Analysis and Principles, 4th edn. McGraw-Hill Science, Columbus (2011)

    Google Scholar 

  15. Calas-Blanchard, C., Catanante, G., Noguer, T.: Electrochemical sensor and biosensor strategies for ROS/RNS detection in biological systems. Electroanalysis 26, 1–10 (2014)

    Article  Google Scholar 

  16. Burns, J., Cooper, W., Ferry, J., King, D.W., DiMento, B., McNeill, K., Miller, C., Miller, W., Peake, B., Rusak, S., Rose, A., Waite, T.: Methods for reactive oxygen species (ROS) detection. Aquat. Sci. 74, 683–734 (2012)

    Article  Google Scholar 

  17. Lo Conte, M., Carroll, K.S.: The chemistry of thiol oxidation and detection. In: Jakob, U., Reichmann, D. (eds.) Oxidative Stress and Redox Regulation, pp. 1–42. Springer Science+Business Media Dordrecht, Dordrecht (2013)

    Chapter  Google Scholar 

  18. Drummond, T.G., Hill, M.G., Barton, J.K.: Electrochemical DNA sensors. Nat. Biotechnol. 21, 1192–1199 (2003)

    Article  Google Scholar 

  19. Kelley, S., Boon, E., Barton, J., Jackson, N., Hill, M.: Single-base mismatch detection based on charge transduction through DNA. Nucleic Acids Res. 27, 4830–4837 (1999)

    Article  Google Scholar 

  20. Kafka, J., Panke, O., Abendroth, B., Lisdat, F.: A label-free DNA sensor based on impedance spectroscopy. Electrochim. Acta 53, 7467–7474 (2008)

    Article  Google Scholar 

  21. Kongpeth, J., Jampasa, S., Chaumpluk, P., Chailapakul, O., Vilaivan, T.: Immobilization-free electrochemical DNA detection with anthraquinone-labeled pyrrolidinyl peptide nucleic acid probe. Talanta 146, 318–325 (2016)

    Article  Google Scholar 

  22. Luo, X., Hsing, I.-M.: Immobilization-free multiplex electrochemical DNA and SNP detection. Biosens. Bioelectron. 25, 803–808 (2009)

    Article  Google Scholar 

  23. Ferreira, A., Rappoport, T.G., Cazalilla, M.A., Neto, A.H.C.: Extrinsic spin hall effect induced by resonant skew scattering in graphene. Phys. Rev. Lett. 112, 066601 (2014)

    Article  Google Scholar 

  24. Fortina, P., Wang, J., Surrey, S., Park, J.Y., Kricka, L.J.: Beyond microtechnology–nanotechnology in molecular diagnosis. In: Liu, R.H., Lee, A.P. (eds.) Integrated Biochips for DNA Analysis, pp. 187–197. Landes Bioscience and Springer, New York (2007). Chapter 13

    Chapter  Google Scholar 

  25. Rahman, M.M., Li, X.-B., Lopa, N.S., Ahn, S.J., Lee, J.-J.: Electrochemical DNA hybridization sensors based on conducting polymers. Sensors 15, 3801–3829 (2015)

    Article  Google Scholar 

  26. Suzdalev, I.P.: Nanothechnology: Physical Chemistry of Nanoclusters, Nanostructures, and Nanomaterials. KomKniga, Moscow, p. 383 (2006)

    Google Scholar 

  27. Blake, P., Yang, R., Morozova, S.V., Schedin, F., Ponomarenko, L.A., Zhukov, A.A., Nair, R.R., Grigorieva, I.V., Novoselov, K.S., Geim, A.K.: Influence of metal contacts and charge inhomogeneity on transport properties of graphene near the neutrality point. Solid State Commun. 149, 1068–1071 (2009)

    Article  Google Scholar 

  28. Anantram, M.P., Leonard, F.: Physics of carbon nanotube electronic devices. Rep. Prog. Phys. 69, 507–561 (2006)

    Article  Google Scholar 

  29. Labunov, V., Shulitski, B., Prudnikava, A., Shaman, Y.P., Basaev, A.S.: Composite nanostructure of vertically aligned carbon nanotube array and planar graphite layer obtained by the injection CVD method. Quantum Electron. Optoelectron. 13, 137–141 (2010)

    Google Scholar 

  30. Kel’in, A., Kulinkovich, O.: Folia pharm. Univ. Carol. (supplementum), 18, 96 (1995)

    Google Scholar 

  31. Egorov, A.S., Egorova, V.P., Krot, V.I., Krylova, H.V., Lakhvich, F.F., Lipnevich, I.V., Orekhovskaya, T.I., Veligura, A.A., Govorov, M.I., Shulitski, B.G., Ulashchik, V.S.: Electrochemical and electrophoretic detection of hybridization on DNA/carbon nanotubes: SNP genetic typing. Herald Found. Basic Res. 3(14), 63–87 (2014)

    Google Scholar 

  32. Veligura, A.A., Egorov, A.S., Egorova, V.P., Krylova, H.V., Lipnevich, I.V., Shulitsky, B.G.: Fluiorofor quenching in oligonucleotide layers self-organized on carbon nanotubes. Uzhhorod Univ. Sci. Herald Ser. Phys. 34, 206–210 (2013)

    Google Scholar 

  33. Grushevskaya, H.V., Lipnevich, I.V., Orekhovskaya, T.I.: Coordination interaction between rare earth and/or transition metal centers and thiophene series oligomer derivatives in ultrathin langmuir-blodgett films. J. Mod. Phys. 4, 7–17 (2013)

    Article  Google Scholar 

  34. Egorov, A.S., Krylova, H.V., Lipnevich, I.V., Shulitsky, B.G., Baran, L.V., Gusakova, S.V., Govorov, M.I.: A Structure of modified multi-walled carbon nanotube clusters on conducting organometallic langmuir - blodgett films. J. Nonlinear Phenom. Complex Sys. 15, 121 (2012)

    Google Scholar 

  35. Abramov, I.I., Hrushevski, V.V., Krylov, G.G., Krylova, H.V., Lipnevich, I.V., Orekhovskaya, T.I.: Method to calculate impedance of interdigital capacity sensor. St. Petersburg J. Electron. 4(73), 59–67 (2012)

    Google Scholar 

  36. Morozov, S.V., Novoselov, K.S., Geim, A.K.: Electron transport in graphene. Phys. Usp. 178, 776–780 (2008)

    Article  Google Scholar 

  37. Grushevskaya, H.V., Krylov, G.: Partially breaking pseudo-dirac band symmetry in graphene. J. Nonlinear Phenom. Complex Sys. 17, 86–96 (2014)

    MATH  Google Scholar 

  38. Grushevskaya, H.V., Krylov, G.G.: Beyond the massless dirac’s fermion approach. In: Bonĉa, J., Kruchinin, S. (eds.) Nanotechnology in the Security Systems. NATO Science for Peace and Security Series C: Environmental Security, pp. 21–31. Springer Science+Business Media, Dordrecht (2015)

    Google Scholar 

  39. Kraeft, V.D., Kremp, D., Ebeling, W., Röpke, G.: Quantum statistics of charged particle systems. Akademie-Verlag, Berlin (1986)

    Book  Google Scholar 

  40. Krylova, H.V., Drapeza, A.I., Khmelnitski, A.I.: Electrical field of open capacity. Devices Control Syst. 6, 43–44 (1993)

    Google Scholar 

  41. Golubeva, E.N., Grushevskaya, H.V., Krylova, N.G., Lipnevich, I.V., Orekhovskaya, T.I.: Raman scattering in conducting metal-organic films deposited on nanoporous anodic alumina. J. Phys. CS. 541, 012070 (2014)

    Google Scholar 

  42. Andrei, E.Y., Li, G., DuRep, X.: Electronic properties of graphene: a perspective from scanning tunneling microscopy and magnetotransport. Prog. Phys. 75, 056501 (2012)

    Article  Google Scholar 

  43. Estrela, C., Estrela, C.R.A., Barbin, E.L., Spano, J.C.E., Marchesan, M.A., Pecora, J.D.: Mechanism of action of sodium hypochlorite. Braz Dent J. 13(2), 113–117 (2002)

    Article  Google Scholar 

  44. Garnett, J.C.M.: Philos. Trans. R. Soc. Lond. 205, 237 (1906)

    Google Scholar 

  45. Vinogradov, A.P.: Electrodynamics of Composite Materials. URSS, Moscow (2001). p. 63

    Google Scholar 

  46. Egorova, V.P., Krylova, H.V., Lipnevich, I.V., Veligura, A.A., Shulitsky, B.G., Fedotenkova, L.Y.: Molecular beacon CNT-based detection of SNPs. J. Phys. CS. 643, 012023 (2015)

    Google Scholar 

  47. Catalan, G., Scott, J.F.: Physics and applications of bismuth ferrite. Adv. Mater. 21, 2463–2485 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. V. Grushevskaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Egorova, V.P. et al. (2016). High-Performance Sensing of DNA Hybridization on Surface of Self-organized MWCNT-Arrays Decorated by Organometallic Complexes. In: Bourgeois, A., Skums, P., Wan, X., Zelikovsky, A. (eds) Bioinformatics Research and Applications. ISBRA 2016. Lecture Notes in Computer Science(), vol 9683. Springer, Cham. https://doi.org/10.1007/978-3-319-38782-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-38782-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-38781-9

  • Online ISBN: 978-3-319-38782-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics