Skip to main content

The SCJ Small Parsimony Problem for Weighted Gene Adjacencies

  • Conference paper
  • First Online:
Bioinformatics Research and Applications (ISBRA 2016)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 9683))

Included in the following conference series:

Abstract

Reconstructing ancestral gene orders in a given phylogeny is a classical problem in comparative genomics. Most existing methods compare conserved features in extant genomes in the phylogeny to define potential ancestral gene adjacencies, and either try to reconstruct all ancestral genomes under a global evolutionary parsimony criterion, or, focusing on a single ancestral genome, use a scaffolding approach to select a subset of ancestral gene adjacencies. In this paper, we describe an exact algorithm for the small parsimony problem that combines both approaches. We consider that gene adjacencies at internal nodes of the species phylogeny are weighted, and we introduce an objective function defined as a convex combination of these weights and the evolutionary cost under the Single-Cut-or-Join (SCJ) model. We propose a Fixed-Parameter Tractable algorithm based on the Sankoff-Rousseau dynamic programming algorithm, that also allows to sample co-optimal solutions. An implementation is available at http://github.com/nluhmann/PhySca.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alekseyev, M., Pevzner, P.A.: Breakpoint graphs and ancestral genome reconstructions. Genome Res. 19, 943–957 (2009)

    Article  Google Scholar 

  2. Bérard, S., Gallien, C., et al.: Evolution of gene neighborhoods within reconciled phylogenies. Bioinformatics 28, 382–388 (2012)

    Article  Google Scholar 

  3. Bertrand, D., Gagnon, Y., Blanchette, M., El-Mabrouk, N.: Reconstruction of ancestral genome subject to whole genome duplication, speciation, rearrangement and loss. In: Moulton, V., Singh, M. (eds.) WABI 2010. LNCS, vol. 6293, pp. 78–89. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Bos, K.I., Schuenemann, V., et al.: A draft genome of yersinia pestis from victims of the black death. Nature 478, 506–510 (2011)

    Article  Google Scholar 

  5. Boža, V., Brejová, B., Vinař, T.: GAML: genome assembly by maximum likelihood. Algorithms Mol. Biol. 10, 18 (2015)

    Article  Google Scholar 

  6. Chauve, C., Ponty, Y., Zanetti, J.: Evolution of genes neighborhood within reconciled phylogenies: an ensemble approach. BMC Bioinform. 16(Suppl. 19), S6 (2015)

    Article  Google Scholar 

  7. Chauve, C., Tannier, E.: A methodological framework for the reconstruction of contiguous regions of ancestral genomes and its application to mammalian genomes. PLoS Comput. Biol. 4, e1000234 (2008)

    Article  MathSciNet  Google Scholar 

  8. Denoeud, F., Carretero-Paulet, L., et al.: The coffee genome provides insight into the convergent evolution of caffeine biosynthesis. Science 345, 125527 (2013)

    Google Scholar 

  9. Feijǎo, P., Meidanis, J.: SCJ: a breakpoint-like distance that simplifies several rearrangement problems. IEEE/ACM TCBB 8, 1318–1329 (2011)

    Google Scholar 

  10. Fitch, W.: Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Biol. 20, 406–416 (1971)

    Article  Google Scholar 

  11. Kováč, J., Brejová, B., Vinař, T.: A practical algorithm for ancestral rearrangement reconstruction. In: Przytycka, T.M., Sagot, M.-F. (eds.) WABI 2011. LNCS, vol. 6833, pp. 163–174. springer, Heidelberg (2011)

    Chapter  Google Scholar 

  12. Luhmann, N., Chauve, C., Stoye, J., Wittler, R.: Scaffolding of ancient contigs and ancestral reconstruction in a phylogenetic framework. In: Campos, S. (ed.) BSB 2014. LNCS, vol. 8826, pp. 135–143. Springer, Heidelberg (2014)

    Google Scholar 

  13. Luhmann, N., Thevenin, A., et al.: The SCJ small parsimony problem for weighted gene adjacencies (extended version) (2016). Preprint http://arxiv.org/abs/1603.08819

  14. Ma, J., Zhang, L., et al.: Reconstructing contiguous regions of an ancestral genome. Genome Res. 16, 1557–1565 (2006)

    Article  Google Scholar 

  15. Maňuch, J., Patterson, M., et al.: Linearization of ancestral multichromosomal genomes. BMC Bioinform. 13(Suppl. 19), S11 (2012)

    Google Scholar 

  16. Miklós, I., Smith, H.: Sampling and counting genome rearrangement scenarios. BMC Bioinform. 16(Suppl 14), S6 (2015)

    Article  Google Scholar 

  17. Ming, R., Van Buren, R., et al.: The pineapple genome and the evolution of CAM photosynthesis. Nature Genet. 47, 1435 (2015)

    Article  Google Scholar 

  18. Neafsey, D.E., Waterhouse, R.M., et al.: Highly evolvable malaria vectors: the genome of 16 Anopheles mosquitoes. Science 347, 1258522 (2015)

    Article  Google Scholar 

  19. Rajaraman, A., Tannier, E., Chauve, C.: FPSAC: fast phylogenetic scaffolding of ancient contigs. Bioinformatics 29, 2987–2994 (2013)

    Article  Google Scholar 

  20. Sankoff, D., Rousseau, P.: Locating the vertices of a steiner tree in an arbitrary metric space. Math. Program. 9, 240–246 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  21. Tannier, E., Zheng, C., Sankoff, D.: Multichromosomal median and halving problems under different genomic distances. BMC Bioinform. 10(1), 120 (2009)

    Article  Google Scholar 

  22. Xu, A.W., Moret, B.M.E.: GASTS: parsimony scoring under rearrangements. In: Przytycka, T.M., Sagot, M.-F. (eds.) WABI 2011. LNCS, vol. 6833, pp. 351–363. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  23. Zheng, C., Sankoff, D.: On the pathgroups approach to rapid small phylogeny. BMC Bioinform. 12(Suppl. 1), S4 (2011)

    Google Scholar 

Download references

Acknowledgements

NL and RW are funded by the International DFG Research Training Group GRK 1906/1. CC is funded by NSERC grant RGPIN-249834.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nina Luhmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Luhmann, N., Thévenin, A., Ouangraoua, A., Wittler, R., Chauve, C. (2016). The SCJ Small Parsimony Problem for Weighted Gene Adjacencies. In: Bourgeois, A., Skums, P., Wan, X., Zelikovsky, A. (eds) Bioinformatics Research and Applications. ISBRA 2016. Lecture Notes in Computer Science(), vol 9683. Springer, Cham. https://doi.org/10.1007/978-3-319-38782-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-38782-6_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-38781-9

  • Online ISBN: 978-3-319-38782-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics