Skip to main content

A Confirmatory Factor Model for the Investigation of Cognitive Data Showing a Ceiling Effect: An Example

  • Conference paper
  • First Online:
Quantitative Psychology Research

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 167))

Abstract

A method for addressing the consequences of ceiling effects on model misfit in confirmatory factor analysis of cognitive data is proposed. This method focuses on the reduction of variance as a major ingredient of the ceiling effect. The model of the covariance matrix is modified in such a way that it reflects the impact of the ceiling effect on variances and covariances. The method applies to models including theory-based constraints of factor loadings for investigating cognitive data. The effectiveness of the method is demonstrated in data collected by means of a measure of working memory capacity. The application of the method in combination with a confirmatory factor model that assumes working memory capacity as the major source of performance yields the expected increase in the degree of model fit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen, M. J., & Yen, W. M. (2001). Introduction to measurement theory (2nd ed.). Monterey CA: Brooks/Cole.

    Google Scholar 

  • Birnbaum, A. (1968). Some latent trait models and their use in inferring an examinee’s ability. In F. M. Lord & M. R. Novick (Eds.), Statistical theories of mental test scores (pp. 395–479). Reading, MA: Addison-Wesley.

    Google Scholar 

  • Hessling, R. M., Traxel, N. M., & Schmidt, T. J. (2004). Ceiling effect. In M. S. Lewis-Beck, A. Bryman, & T. F. Liao (Eds.), The SAGE encyclopedia of social science research methods (p. 107). Thousand Oaks: Sage.

    Google Scholar 

  • Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6, 1–55. doi:10.1080/10705519909540118.

    Article  Google Scholar 

  • Jöreskog, K. G. (1970). A general method for analysis of covariance structure. Biometrika, 57, 239–257. doi:10.2307/2334833.

    Article  MathSciNet  MATH  Google Scholar 

  • Jöreskog, K. G., & Sörbom, D. (2006). LISREL 8.80.. Lincolnwood, IL: Scientific Software International.

    Google Scholar 

  • Kubinger, K. D. (2009). Applications of the linear logistic test model in psychometric research. Educational and Psychological Measurement, 69, 232–244. doi:10.1177/0013164408322021.

    Article  MathSciNet  Google Scholar 

  • Lord, F. M., & Novick, M. R. (1968). Statistical theories of mental test scores. Reading: Addison-Wesley.

    MATH  Google Scholar 

  • Micceri, T. (1989). The unicorn, the normal curve, and other improbable creatures. Psychological Bulletin, 105, 156–166. doi:10.1037/0033-2909.105.1.156.

    Article  Google Scholar 

  • Muthen, B. (1989). TOBIT factor analysis. British Journal of Mathematical and Statistical Psychology, 42, 241–250. doi:10.1111/j.2044-8317.1989.tb00913.x.

    Article  MathSciNet  MATH  Google Scholar 

  • Rasch, G. (1960). Probabilistic models for some intelligence and attainment tests. Copenhagen: Danish Institute for Educational Research.

    Google Scholar 

  • Satorra, A., & Bentler, P. M. (1994). Corrections to the test statistics and standard errors on covariance structure analysis. In A. von Eye & C. C. Glogg (Eds.), Latent variable analysis (pp. 399–419). Thousand Oaks, CA: Sage.

    Google Scholar 

  • Schweizer, K. (1996). The speed-accuracy transition due to task complexity. Intelligence, 22, 115–128. doi:10.1016/S0160-2896(96)90012-4.

    Article  Google Scholar 

  • Schweizer, K. (2011). Scaling variances of latent variables by standardizing loadings: Applications to working memory and the position effect. Multivariate Behavioral Research, 46, 938–955. doi:10.1080/00273171.2011.625312.

    Article  Google Scholar 

  • Tobit, J. (1958). Estimation of relationships for limited dependent variables. Econometrica, 26, 24–36. doi:10.2307/1907382.

    Article  MathSciNet  Google Scholar 

  • Uttl, B. (2005). Measurements of individual differences: Lessons from memory assessment in research and clinical practice. Psychological Science, 16, 460–467. doi:10.1111/j.0956-7976.2005.01557.x.

    Google Scholar 

  • Van den Oord, E. J. C. G., & Van der Ark, L. A. (1997). A note on the use of Tobit approach for tests scores with floor or ceiling effects. British Journal of Mathematical and Statistical Psychology, 50, 351–364. doi:10.1111/j.2044-8317.1997.tb01150.x.

    Article  MATH  Google Scholar 

  • Vandenberg, R. J., & Lance, C. E. (2000). A review and synthesis of the measurement invariance literature: Suggestions, practices, and recommendations for organisational research. Organisational Research Methods, 16, 4–70.

    Article  Google Scholar 

  • Vogt, W. P. (2005). Dictionary of statistics & methodology: A nontechnical guide for the social sciences (3rd ed.). Thousand Oaks: Sage.

    Book  Google Scholar 

  • Wang, L., Zhang, Z., McArdle, J. J., & Salthouse, T. A. (2009). Investigating ceiling effects in longitudinal data analysis. Multivariate Behavioral Research, 43, 476–496. doi:10.1080%2F00273170802285941.

    Article  Google Scholar 

  • Wesnes, K., & Warburton, D. M. (1983). The effect of smoking on rapid visual information processing performance. Neuropsychobiology, 9, 223–229. doi:10.1016/j.neurobiolaging.2014.01.145.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl Schweizer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Schweizer, K. (2016). A Confirmatory Factor Model for the Investigation of Cognitive Data Showing a Ceiling Effect: An Example. In: van der Ark, L., Bolt, D., Wang, WC., Douglas, J., Wiberg, M. (eds) Quantitative Psychology Research. Springer Proceedings in Mathematics & Statistics, vol 167. Springer, Cham. https://doi.org/10.1007/978-3-319-38759-8_14

Download citation

Publish with us

Policies and ethics