Skip to main content

Basic Techniques in Molecular Pathology

  • Chapter
  • First Online:
Pathology and Epidemiology of Cancer

Abstract

A critical step in any molecular analysis is in the determination and understanding of the material being selected. There are a variety of sample types than can be used, including; cell culture, body fluids, and both fresh and fixed tissue. All of these have various advantages and disadvantages that must be carefully considered. Many different types of molecular techniques are available for use in both a research and clinical setting. These range from simple, fast assays that interrogate a single area to large, complex assays that can sequence the entire genome. While technology is rapidly evolving, some of the more common technologies used to interrogate a single loci, gene, or RNA transcript include quantitative real-time polymerase chain reaction (qPCR), mutation-specific polymerase chain reaction, and in situ hybridization (ISH). Two technologies that are commonly used to analyze a larger/broader area include microarrays and sequencing. Currently, massively parallel sequencing (MPS) is being used for a variety of large-scale analysis. These range from whole genome sequencing (WGS), expression analysis using RNA-sequencing, and determining where certain transcription factors bind on the genome using chromatin immunoprecipitation sequencing. Regardless, a tremendous amount of data can be generated and often a single person does not have all of the desired expertise to effectively handle all of the requirements necessary to properly generate and interpret this amount of data. Therefore, collaboration with experts in other fields is often necessary to generate, analyze, and interpret all of the data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berglind H, Pawitan Y, Kato S, Ishioka C, Soussi T. Analysis of p53 mutation status in human cancer cell lines. Cancer Biol Ther. 2008;5(May):699–708.

    Article  Google Scholar 

  2. Yu M, Selvaraj SK, Liang-Chu MMY, Aghajani S, Busse M, Yuan J, et al. A resource for cell line authentication, annotation and quality control. Nature. 2015;520(7547):307–11. Available from http://www.nature.com/doifinder/10.1038/nature14397. Accessed 16 Apr 2015.

  3. Geraghty RJ, Capes-Davis A, Davis JM, Downward J, Freshney RI, Knezevic I, et al. Guidelines for the use of cell lines in biomedical research. Br J Cancer. 2014;111(6):1021–46. Available from http://www.nature.com/doifinder/10.1038/bjc.2014.166\n, http://www.ncbi.nlm.nih.gov/pubmed/25117809. Accessed 9 Sept 2014 (Nature Publishing Group).

  4. Bowen RAR, Remaley AT. Interferences from blood collection tube components on clinical chemistry assays. Biochem Medica. 2014;24(1):31–44. Available from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3936985&tool=pmcentrez&rendertype=abstract.

  5. Philibert RA, Zadorozhnyaya O, Beach SRH, Brody GH. A comparison of the genotyping results using dna obtained from blood and saliva. Psychiatr Genet. 2008;18(6):275–81.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hansen TVO, Simonsen MK, Nielsen FC, Hundrup YA. Collection of blood, saliva, and buccal cell samples in a pilot study on the Danish nurse cohort: comparison of the response rate and quality of genomic DNA. Cancer Epidemiol Biomarkers Prev. 2007;16(10):2072–6. Available from http://www.ncbi.nlm.nih.gov/pubmed/17932355. Accessed 22 Nov 2014.

  7. Kidd JM, Sharpton TJ, Bobo D, Norman PJ, Martin AR, Carpenter ML, et al. Exome capture from saliva produces high quality genomic and metagenomic data. BMC Genomics. 2014;15(1):262. Available from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4051168&tool=pmcentrez&rendertype=abstract. Accessed 19 Nov 2014.

  8. Spencer DH, Sehn JK, Abel HJ, Watson MA, Pfeifer JD, Duncavage EJ. Comparison of clinical targeted next-generation sequence data from formalin-fixed and fresh-frozen tissue specimens. J Mol Diagn. 2013;15(5):623–33. Available from http://linkinghub.elsevier.com/retrieve/pii/S1525157813000913 (American Society for Investigative Pathology).

  9. Howat WJ, Wilson BA. Tissue fixation and the effect of molecular fixatives on downstream staining procedures. Methods. 2014;70(1):12–9. Available from: http://linkinghub.elsevier.com/retrieve/pii/S1046202314000607 (Elsevier Inc.).

  10. Espina V, Wulfkuhle JD, Calvert VS, VanMeter A, Zhou W, Coukos G, et al. Laser-capture microdissection. Nat Protoc. 2006;1(2):586–603. Available from http://www.nature.com/doifinder/10.1038/nprot.2006.85.

  11. Keaysa KM, Owensa GP, Ritchiea AM, Gildena DH, Burgoon MP. Laser capture microdissection and single-cell RT-PCR without RNA purification. J Immunol Methods. 2005;302(1–2):90–8.

    Article  Google Scholar 

  12. Heid CA, Stevens J, Livak KJ, Williams PM. Real time quantitative PCR. Genome Res. 1996;6(10):986–94. Available from http://www.ncbi.nlm.nih.gov/pubmed/8908518.

  13. Keyaerts E, Vijgen L, Maes P, Duson G, Neyts J, Van Ranst M. Viral load quantitation of SARS-coronavirus RNA using a one-step real-time RT-PCR. Int J Infect Dis. 2006;10(1):32–7. Available from http://www.ncbi.nlm.nih.gov/pubmed/16023880.

  14. Weiss LM, Chen Y-Y. EBER in situ hybridization for epstein-barr virus. Methods Mol Biol. 2013;999:223–30. Available from http://www.ncbi.nlm.nih.gov/pubmed/23666702.

  15. Sealfon SC, Chu TT. RNA and DNA microarrays. Methods Mol Biol. 2011;671:3–34. Available from http://www.ncbi.nlm.nih.gov/pubmed/20967621.

  16. Genomics.agilent.com. Sureprint G3 gene expression microarrays; 2015. Available from http://www.genomics.agilent.com/article.jsp?pageId=2197&_requestid=340872. Accessed 1 Jan 2015.

  17. Affymetrix. Genome-wide human SNP array 6.0; 2015. Available from http://www.afymetrix.com/catalog/131533/AFFY/Genome-Wide+Human+SNP+Array+6.0#1_1. Accessed 1 Jan 2015.

  18. Manning M, Hudgins L. Array-based technology and recommendations for utilization in medical genetics practice for detection of chromosomal abnormalities. Genet Med. 2010;12:742–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Michelson D, Shevell M, Sherr E, Moeschler J, Gropman A, Ashwal S. Evidence report: genetic and metabolic testing on children with global developmental delay: report of the quality standards subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society. Neurology. 2011;77:1629–35.

    Article  CAS  PubMed  Google Scholar 

  20. American Academy of Pediatrics. genetic and metabolic testing on children with global developmental delay. Pediatrics. 2012;129:129e825.

    Google Scholar 

  21. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, et al. The sequence of the human genome. Science. 2001;291(5507):1304–51.

    Article  CAS  PubMed  Google Scholar 

  22. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. Initial sequencing and analysis of the human genome. Nature. 2001;409(6822):860–921. Available from http://www.ncbi.nlm.nih.gov/pubmed/11237011. Accessed 15 Feb 2001.

  23. Genome.gov (National Intitute of Health US. The human genome project completion: frequently asked questions; 2015. Available from http://www.genome.gov/11006943. Accessed 1 Jan 2015.

  24. Stachler MD, Taylor-weiner A, Peng S, Mckenna A, Agoston AT, Odze RD, et al. Paired exome analysis of Barrett’s esophagus and adenocarcinoma. Nat Genet. 2015;1–12. Available from http://dx.doi.org/10.1038/ng.3343 (Nature Publishing Group).

  25. Scientific T. Ion Torrent next-genration sequencing. Available from https://www.thermofisher.com/us/en/home/brands/ion-torrent.html.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew D. Stachler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Stachler, M.D. (2017). Basic Techniques in Molecular Pathology. In: Loda, M., Mucci, L., Mittelstadt, M., Van Hemelrijck, M., Cotter, M. (eds) Pathology and Epidemiology of Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-35153-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-35153-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-35151-3

  • Online ISBN: 978-3-319-35153-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics