Skip to main content

Pathology and Molecular Pathology of Hematologic Malignancies

  • Chapter
  • First Online:
  • 2940 Accesses

Abstract

Hematologic malignancies include neoplasms that are derived from bone marrow progenitor cells as well as more mature cells of the immune system. They can also be distinguished by their primary presentation as diseases of the blood or as solid tumors involving lymph nodes and organs. These diseases account for a major cause of morbidity and mortality around the world, and their clinical presentation varies from acute leukemia which has an aggressive clinical course leading to death in a few months, to low-grade lymphoma, which can go undetected for years. It is important to note that the field is progressing rapidly, and new discoveries are being made frequently; hence, we focus on well-characterized pathways that are operant in hematologic malignancies. Much progress has been made in understanding the pathogenetic basis of these diseases, and many pioneering discoveries regarding the molecular lesions that underlie these diseases have been made in the past few decades. Moreover, the development of targeted therapies based on these discoveries promise to revolutionize how cancer is treated. In this chapter, we will review a select number of hematologic malignancies, divided between lymphoid and myeloid malignancies, and detail the clinical and, pathologic features of the diseases along with the molecular genetic bases. Important developments in targeted therapies will be discussed where applicable.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Vardiman JW, et al. The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood. 2009;114(5):937–51.

    Article  CAS  PubMed  Google Scholar 

  2. Akashi K, et al. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature. 2000;404(6774):193–7.

    Article  CAS  PubMed  Google Scholar 

  3. Muramatsu M, et al. Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell. 2000;102(5):553–63.

    Article  CAS  PubMed  Google Scholar 

  4. Adams JM, et al. Cellular myc oncogene is altered by chromosome translocation to an immunoglobulin locus in murine plasmacytomas and is rearranged similarly in human Burkitt lymphomas. Proc Natl Acad Sci USA. 1983;80(7):1982–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bakhshi A, et al. Cloning the chromosomal breakpoint of t(14;18) human lymphomas: clustering around JH on chromosome 14 and near a transcriptional unit on 18. Cell. 1985;41(3):899–906.

    Article  CAS  PubMed  Google Scholar 

  6. Tsujimoto Y, et al. Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation. Science. 1984;226(4678):1097–9.

    Article  CAS  PubMed  Google Scholar 

  7. Kerckaert JP, et al. LAZ3, a novel zinc-finger encoding gene, is disrupted by recurring chromosome 3q27 translocations in human lymphomas. Nat Genet. 1993;5(1):66–70.

    Article  CAS  PubMed  Google Scholar 

  8. Thompson MP, Kurzrock R. Epstein-Barr virus and cancer. Clin Cancer Res. 2004;10(3):803–21.

    Article  CAS  PubMed  Google Scholar 

  9. Shimoyama Y, et al. Senile Epstein-Barr virus-associated B-cell lymphoproliferative disorders: a mini review. J Clin Exp Hematop. 2006;46(1):1–4.

    Article  PubMed  Google Scholar 

  10. Muller am, et al. Epidemiology of non-Hodgkin’s lymphoma (NHL): trends, geographic distribution, and etiology. Ann Hematol. 2005;84(1):1–12.

    Google Scholar 

  11. Dohner H, et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med. 2000;343(26):1910–6.

    Article  CAS  PubMed  Google Scholar 

  12. Horsman DE, et al. Comparison of cytogenetic analysis, southern analysis, and polymerase chain reaction for the detection of t(14; 18) in follicular lymphoma. Am J Clin Pathol. 1995;103(4):472–8.

    Article  CAS  PubMed  Google Scholar 

  13. Rack K, Vidrequin S, Dargent, JL. Genomic profiling of myeloma: the best approach, a comparison of cytogenetics, FISH and array-CGH of 112 myeloma cases. J Clin Pathol. 2015.

    Google Scholar 

  14. Li JY, et al. Detection of translocation t(11;14)(q13;q32) in mantle cell lymphoma by fluorescence in situ hybridization. Am J Pathol. 1999;154(5):1449–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kendrick S, et al. Diffuse large B-cell lymphoma cell-of-origin classification using the Lymph2Cx assay in the context of BCL2 and MYC expression status. Leuk Lymphoma. 2015;1–4.

    Google Scholar 

  16. Shaffer 3rd AL, Young RM, Staudt LM. Pathogenesis of human B cell lymphomas. Ann Rev Immunol. 2012;30:565–610.

    Google Scholar 

  17. Said J, Lones M, Yea S. Burkitt lymphoma and MYC: what else is new? Adv Anat Pathol. 2014;21(3):160–5.

    Article  PubMed  Google Scholar 

  18. Baens M, et al. Structure of the MLT gene and molecular characterization of the genomic breakpoint junctions in the t(11;18)(q21;q21) of marginal zone B-cell lymphomas of MALT type. Genes Chromosom Cancer. 2000;29(4):281–91.

    Article  CAS  PubMed  Google Scholar 

  19. Turakhia S, et al. Immunohistochemistry for BRAF V600E in the differential diagnosis of hairy cell leukemia vs other splenic B-cell lymphomas. Am J Clin Pathol. 2015;144(1):87–93.

    Article  CAS  PubMed  Google Scholar 

  20. Iqbal J, et al. Genomic signatures in T-cell lymphoma: how can these improve precision in diagnosis and inform prognosis? Blood Rev. 2015.

    Google Scholar 

  21. Lamant L, et al. High incidence of the t(2;5)(p23;q35) translocation in anaplastic large cell lymphoma and its lack of detection in Hodgkin’s disease. Comparison of cytogenetic analysis, reverse transcriptase-polymerase chain reaction, and P-80 immunostaining. Blood. 1996;87(1):284–91.

    CAS  PubMed  Google Scholar 

  22. Parrilla-Castellar ER, et al. ALK-negative anaplastic large cell lymphoma is a genetically heterogeneous disease with widely disparate clinical outcomes. Blood. 2014;124(9):1473–80.

    Google Scholar 

  23. Ansell SM, et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med. 2015;372(4):311–9.

    Article  PubMed  Google Scholar 

  24. Armitage JO. Early-stage Hodgkin’s lymphoma. N Engl J Med. 2010;363(7):653–62.

    Article  CAS  PubMed  Google Scholar 

  25. Hamblin TJ, et al. Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood. 1999;94(6):1848–54.

    CAS  PubMed  Google Scholar 

  26. Calin GA, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 2002;99(24):15524–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Klein U, et al. The DLEU2/miR-15a/16–1 cluster controls B cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell. 2010;17(1):28–40.

    Article  CAS  PubMed  Google Scholar 

  28. Magrath I. Epidemiology: clues to the pathogenesis of Burkitt lymphoma. Br J Haematol. 2012;156(6):744–56.

    Article  CAS  PubMed  Google Scholar 

  29. Dalla-Favera R, et al. Human c-myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc Natl Acad Sci USA. 1982;79(24):7824–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Battey J, et al. The human c-myc oncogene: structural consequences of translocation into the IgH locus in Burkitt lymphoma. Cell. 1983;34(3):779–87.

    Article  CAS  PubMed  Google Scholar 

  31. Rabbitts TH, Hamlyn PH, Baer R. Altered nucleotide sequences of a translocated c-myc gene in Burkitt lymphoma. Nature. 1983;306(5945):760–5.

    Article  CAS  PubMed  Google Scholar 

  32. Onciu M, et al. Secondary chromosomal abnormalities predict outcome in pediatric and adult high-stage Burkitt lymphoma. Cancer. 2006;107(5):1084–92.

    Article  PubMed  Google Scholar 

  33. Poirel HA, et al. Specific cytogenetic abnormalities are associated with a significantly inferior outcome in children and adolescents with mature B-cell non-Hodgkin’s lymphoma: results of the FAB/LMB 96 international study. Leukemia. 2009;23(2):323–31.

    Article  CAS  PubMed  Google Scholar 

  34. Boerma EG, et al. Translocations involving 8q24 in Burkitt lymphoma and other malignant lymphomas: a historical review of cytogenetics in the light of todays knowledge. Leukemia. 2009;23(2):225–34.

    Article  CAS  PubMed  Google Scholar 

  35. Lin CY, et al. Transcriptional amplification in tumor cells with elevated c-Myc. Cell. 2012;151(1):56–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sabo A, et al. Selective transcriptional regulation by Myc in cellular growth control and lymphomagenesis. Nature. 2014;511(7510):488–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Janz S, Potter M, Rabkin CS. Lymphoma-and leukemia-associated chromosomal translocations in healthy individuals. Genes Chromosom Cancer. 2003;36(3):211–23.

    Article  CAS  PubMed  Google Scholar 

  38. Peled JU, et al. Requirement for cyclin D3 in germinal center formation and function. Cell Res. 2010;20(6):631–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schmitz R, et al. Burkitt lymphoma pathogenesis and therapeutic targets from structural and functional genomics. Nature. 2012;490(7418):116–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wotherspoon AC, et al. Regression of primary low-grade B-cell gastric lymphoma of mucosa-associated lymphoid tissue type after eradication of Helicobacter pylori. Lancet. 1993;342(8871):575–7.

    Article  CAS  PubMed  Google Scholar 

  41. Dierlamm J, et al. Genetic abnormalities in marginal zone B-cell lymphoma. Hematol Oncol. 2000;18(1):1–13.

    Article  CAS  PubMed  Google Scholar 

  42. Hummel M, et al. A biologic definition of Burkitt’s lymphoma from transcriptional and genomic profiling. N Engl J Med. 2006;354(23):2419–30.

    Article  CAS  PubMed  Google Scholar 

  43. Bastard C, et al. LAZ3 rearrangements in non-Hodgkin’s lymphoma: correlation with histology, immunophenotype, karyotype, and clinical outcome in 217 patients. Blood. 1994;83(9):2423–7.

    CAS  PubMed  Google Scholar 

  44. Alizadeh AA, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000;403(6769):503–11.

    Google Scholar 

  45. Biagi JJ, Seymour, JF. Insights into the molecular pathogenesis of follicular lymphoma arising from analysis of geographic variation. Blood. 2002;99(12):4265–75.

    Google Scholar 

  46. Limpens J, et al. Lymphoma-associated translocation t(14;18) in blood B cells of normal individuals. Blood. 1995;85(9):2528–36.

    CAS  PubMed  Google Scholar 

  47. Dave SS, et al. Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells. N Engl J Med. 2004;351(21):2159–69.

    Article  CAS  PubMed  Google Scholar 

  48. Dick JE. Stem cell concepts renew cancer research. Blood. 2008;112(13):4793–807.

    Article  CAS  PubMed  Google Scholar 

  49. Lapidot T, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367(6464):645–8.

    Article  CAS  PubMed  Google Scholar 

  50. Goardon N, et al. Coexistence of LMPP-like and GMP-like leukemia stem cells in acute myeloid leukemia. Cancer Cell. 2011;19(1):138–52.

    Article  CAS  PubMed  Google Scholar 

  51. Nutt SL, et al. Commitment to the B-lymphoid lineage depends on the transcription factor Pax5. Nature. 1999;401(6753):556–62.

    Article  CAS  PubMed  Google Scholar 

  52. Fu S, et al. PML/RARalpha, a fusion protein in acute promyelocytic leukemia, prevents growth factor withdrawal-induced apoptosis in TF-1 cells. Clin Cancer Res. 1995;1(6):583–90.

    CAS  PubMed  Google Scholar 

  53. Rowley JD, Golomb HM, Dougherty C. 15/17 translocation, a consistent chromosomal change in acute promyelocytic leukaemia. Lancet. 1977;1(8010):549–50.

    Article  CAS  PubMed  Google Scholar 

  54. Ley TJ, et al. DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature. 2008;456(7218):66–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Welch JS, et al. The origin and evolution of mutations in acute myeloid leukemia. Cell. 2012;150(2):264–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Huang ME, et al. Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood. 1988;72(2):567–72.

    CAS  PubMed  Google Scholar 

  57. Genovese G, et al. Clonal hematopoiesis and blood-cancer risk inferred from blood DNA sequence. N Engl J Med. 2014;371(26):2477–87.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Dohner H, Weisdorf DJ, Bloomfield CD. Acute myeloid leukemia. N Engl J Med. 2015;373(12):1136–52.

    Article  PubMed  Google Scholar 

  59. Rowley JD. Letter: a new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature. 1973;243(5405):290–3.

    Article  CAS  PubMed  Google Scholar 

  60. Nowell PC, Hungerford DA. Chromosome studies on normal and leukemic human leukocytes. J Natl Cancer Inst. 1960;25:85–109.

    CAS  PubMed  Google Scholar 

  61. Ben-Neriah Y, et al. The chronic myelogenous leukemia-specific P210 protein is the product of the bcr/abl hybrid gene. Science. 1986;233(4760):212–4.

    Article  CAS  PubMed  Google Scholar 

  62. Druker BJ, et al. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med. 2001;344(14):1031–7.

    Article  CAS  PubMed  Google Scholar 

  63. Witthuhn BA, et al. JAK2 associates with the erythropoietin receptor and is tyrosine phosphorylated and activated following stimulation with erythropoietin. Cell. 1993;74(2):227–36.

    Article  CAS  PubMed  Google Scholar 

  64. Kralovics R, et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med. 2005;352(17):1779–90.

    Article  CAS  PubMed  Google Scholar 

  65. Pikman Y, et al. MPLW515L is a novel somatic activating mutation in myelofibrosis with myeloid metaplasia. PLoS Med. 2006;3(7):e270.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Klampfl T, et al. Somatic mutations of calreticulin in myeloproliferative neoplasms. N Engl J Med. 2013;369(25):2379–90.

    Article  CAS  PubMed  Google Scholar 

  67. Starczynowski DT, et al. Identification of miR-145 and miR-146a as mediators of the 5q-syndrome phenotype. Nat Med. 2010;16(1):49–58.

    Article  CAS  PubMed  Google Scholar 

  68. ellagatti A, et al. Haploinsufficiency of RPS14 in 5q-syndrome is associated with deregulation of ribosomal-and translation-related genes. Br J Haematol. 2008;142(1):57–64.

    Google Scholar 

  69. Ades L, Itzykson R, Fenaux P. Myelodysplastic syndromes. Lancet. 2014;383(9936):2239–52.

    Article  PubMed  Google Scholar 

  70. Yoshida K, et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature. 2011;478(7367):64–9.

    Article  CAS  PubMed  Google Scholar 

  71. Pastore F, et al. Combined molecular and clinical prognostic index for relapse and survival in cytogenetically normal acute myeloid leukemia. J Clin Oncol. 2014;32(15):1586–94.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

We are grateful to Dr. Scott Rodig of the Brigham and Women’s Hospital, Harvard Medical School for review of lecture notes in preparation for this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Said .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rao, D., Said, J. (2017). Pathology and Molecular Pathology of Hematologic Malignancies. In: Loda, M., Mucci, L., Mittelstadt, M., Van Hemelrijck, M., Cotter, M. (eds) Pathology and Epidemiology of Cancer. Springer, Cham. https://doi.org/10.1007/978-3-319-35153-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-35153-7_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-35151-3

  • Online ISBN: 978-3-319-35153-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics