Skip to main content

Theoretical Modeling, Design, and Development of Integrated Planar Waveguide Optical Sensor

  • Chapter
  • First Online:
Planar Waveguide Optical Sensors

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 1018 Accesses

Abstract

Planar waveguide optical sensor development has principally been driven by the need for rapid, automated devices for application in the fields of clinical diagnostics and biological detection. This chapter is prepared as theoretical basis providing the basic foundation and supported by application as evidence for the sensor development. Using Maxwell’s equation, a theoretical analysis for wave propagation in planar waveguide sensor with silicon oxynitride (SiON) as the waveguide material is presented. The theoretical results are in good agreement with experimental results. Theoretical consideration, supporting calculations, and experimental results showed that the sensor can be used for online monitoring of glucose level as it requires very minimal sample volume for its detection with high sensitivity. The sensor will have a significant impact on health care in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vijayan A, Fuke MV, Karekar RN, Aiyer RC (2009) Planar optical waveguide CO2 evanescent wave sensor based on a clad of alstonia scholaris leaf extract. IEEE Sens J 9(1):13–19

    Article  Google Scholar 

  2. Barrios CA (2009) Optical slot-waveguide based biochemical sensors. Sensors 9(6):4751–4765

    Article  Google Scholar 

  3. Liu Y et al (1992) An Integrated optical sensor for measuring glucose concentration. Appl Phys B 54:18–23

    Article  Google Scholar 

  4. Mukundan H et al (2009) Planar optical waveguide-based biosensor for the quantitative detection of tumor markers. Sens Actuators B 138(2):453–460

    Article  Google Scholar 

  5. Lifante G (2003) Integrated photonics: fundamental. Wiley, England

    Book  Google Scholar 

  6. Dutta A, Deka B, Sahu PP (2013) Modeling and fabrication of evanescent waveguide-based optical sensor for sensitivity enhancement using silicon oxynitride technology. Optic Eng 52:077101–077106

    Article  Google Scholar 

  7. Passaro VMN, Dell’Olio F, Casamassima B, De Leonardis F (2007) Guided-wave optical biosensors. Sensors 7(4):508–536

    Article  Google Scholar 

  8. Dell’Olio F et al (2007) Sensitivity analysis of rib waveguides for integrated optical sensors. Paper presented at the international workshop on advances in sensors and interface, Bari, Italy

    Google Scholar 

  9. Passaro VMN et al (2009) Efficient chemical sensing by coupled slot SOI waveguides. Sensors 9(2):1012–1032

    Article  Google Scholar 

  10. Dell’Olio F, Passaro VMN (2007) Optical sensing by optimized silicon slot waveguides. Optic Express 15(8):4977–4993

    Article  Google Scholar 

  11. Taya SA et al (2008) Theoretical analysis of TM nonlinear asymmetrical waveguide optical sensors. Sens Actuators A Phys 147:137–141

    Article  Google Scholar 

  12. Taya SA et al (2010) Nonlinear planar asymmetrical optical waveguides for sensing applications. Optik 121(9):860–865

    Article  Google Scholar 

  13. Deka B, Sahu PP (2009) Transformation relationship of directional coupler with multimode interference coupler and two mode interference coupler. J Opt 38(2):75–87

    Article  Google Scholar 

  14. Snyder AW, Love JD (2000) Circular fibers. Optical waveguide theory. Kluwer Academic Publishers, USA, pp 301–335

    Google Scholar 

  15. Gloge D (1971) Weakly guiding fibers. Appl Opt 10(10):2252–2258

    Article  Google Scholar 

  16. Veldhuis GJ et al (2000) Sensitivity enhancement in evanescent optical waveguide sensors. IEEE J Lightwave Tech 18(5):677–682

    Article  Google Scholar 

  17. Jamid HA (2002) Multilayer ARROW channel waveguide for evanescent field enhancement in low-index media. Appl Opt 41(7):1385–1390

    Article  Google Scholar 

  18. Taya SA, El-Agez TM (2011) A reverse symmetry optical waveguide sensor using a plasma substrate. J Opt 13(7):1–6

    Article  Google Scholar 

  19. Naskar S (2006) Deposition and characterisation of silicon oxynitride material for the fabrication of optical waveguides, PhD thesis, University of Case Western Reserve, Cleveland, Ohio, USA

    Google Scholar 

  20. Nishihara H, Haruna M, Suhara T (1989) Optical integrated circuits. McGraw-Hill, New York

    Google Scholar 

  21. Gandhi SK (2008) VLSI fabrication principles: silicon and gallium arsenide. Willey, New Delhi

    Google Scholar 

  22. Worhoff K et al (1999) Design, tolerance analysis and fabrication of silicon oxynitride based planar optical waveguides for communication devices. J Lightwave Tech 17(8):1401–1407

    Article  Google Scholar 

  23. Bona GL et al (2003) SiON high refractive-index waveguide and planar lightwave circuit. IBM J Res Dev 47(2, 3):239–249

    Google Scholar 

  24. Hussein MG et al (2003) Stability of low refractive index PECVD silicon oxynitride layers. Paper presented in symposium IEEE/LEOS Benelux Chapter 2003, pp 77–80

    Google Scholar 

  25. Nunes PS et al (2010) Refractive index sensor based on a 1D photonic crystal in a microfluidic channel. Sensors 10(3):2348–2358

    Article  Google Scholar 

  26. Heideman RG, Lambeck PV (1999) Remote opto-chemical sensing with extreme sensitivity: design, fabrication and performance of a pigtailed integrated optical phase-modulated Mach-Zehnder interferometer system. Sens Actuators B Chem 61(1–3):100–127

    Article  Google Scholar 

  27. Lambeck PV (2006) Integrated optical sensors for the chemical domain. Meas Sci Technol 17(8):R93–R116

    Article  Google Scholar 

  28. Ghatak AK, Thyagarajan K (2004) Leaky modes in optical waveguides. Optical electronics. Cambridge University Press, New York, pp 347–358

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aradhana Dutta .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dutta, A., Sahu, P.P. (2016). Theoretical Modeling, Design, and Development of Integrated Planar Waveguide Optical Sensor. In: Planar Waveguide Optical Sensors. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-35140-7_4

Download citation

Publish with us

Policies and ethics