Skip to main content

Introduction to Planar Waveguide Optical Sensor

  • Chapter
  • First Online:
Planar Waveguide Optical Sensors

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 1077 Accesses

Abstract

Sensing platform based on the integrated optical planar waveguide represents an active research area. The development of optical planar waveguide sensor has largely been motivated by the need for rapid, automated devices for application in the fields of clinical diagnostics and adulteration detection. The technologies highlighted in this chapter have taken advantage of emerging advances in silicon technology and Lab on a Chip (LOC) device platform. This chapter gives an introduction of the integrated optic (IO) sensors, its characteristics, and a brief outline of works along with the scope of waveguide sensors. Furthermore, the silicon photonics fabrication platform that was used to fabricate the sensor, the optical waveguide material study as well as the impetus for the use of silicon photonics is reported in this chapter. The chapter ends with the organization of this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vijayan A, Fuke MV, Karekar RN, Aiyer RC (2009) Planar optical waveguide CO2 evanescent wave sensor based on a clad of Alstonia scholaris leaf extract. IEEE Sens J 9(1):13–19

    Article  Google Scholar 

  2. Abulaiti H et al (2011) Highly sensitive and selective NiO Film/K+−exchanged glass composite optical waveguide sensor for chlorobenzene vapor detection. J Phys Conf Ser 307:1–6

    Article  Google Scholar 

  3. Ansari ZA et al (1998) Influence of chlorine on planar optical guide cladded with RbCl and AgCl. Appl Surf Sci 125(2):149–156

    Google Scholar 

  4. DeGrandpre MD et al (1990) Thin film planar waveguide sensor for liquid phase absorbance measurements. Anal Chem 62 (18):2012–2017

    Google Scholar 

  5. Kuhn KJ, Burgess LW (1993) Chemometric evaluation of the multimode response of an ion-diffused planar optical waveguide to liquid phase analytes. Anal Chem 65(10):1390–1398

    Article  Google Scholar 

  6. Barrios CA (2009) Optical slot-waveguide based biochemical sensors. Sensors 9(6):4751–4765

    Article  Google Scholar 

  7. Mukundan H et al (2009) Waveguide-based biosensors for pathogen detection. Sensors 9(7):5783–5809

    Article  Google Scholar 

  8. Singh V, Kumar D (2009) Theoretical modeling of a metal-clad planar waveguide based biosensors for the detection of pseudomonas-like bacteria. Prog Electromagnet Res M6:167–184

    Google Scholar 

  9. Barrios CA (2008) Label-free optical biosensing with slot-waveguides. Opt Lett 33(7):708–710

    Article  Google Scholar 

  10. Horvath R et al (2003) Optical waveguide sensor for on-line monitoring of bacteria. Opt Lett 28(14):1233–1235

    Article  Google Scholar 

  11. Liu Y et al (1992) An integrated optical sensor for measuring glucose concentration. Appl Phys B 54:18–23

    Article  Google Scholar 

  12. Hulme JP et al (2011) Simple leaky-waveguide devices for the detection of bacterial spores. Sens Actuators B 160(1):1508–1513

    Article  Google Scholar 

  13. Mukundan H et al (2009) Planar optical waveguide-based biosensor for the quantitative detection of tumor markers. Sens Actuators B 138(2):453–460

    Article  Google Scholar 

  14. Runde D et al (2008) Mode-selective coupler for wavelength multiplexing using LiNbO3: Ti optical waveguides. Cent Eur J Phys 6(3):588–592

    Google Scholar 

  15. Rottmann F et al (1988) Integrated-optic wavelength multiplexers on lithium niobate based on two-mode interference. J Lightwave Technol 6(6):946–952

    Google Scholar 

  16. Lin JP et al (1989) Four-channel wavelength division multiplexer on Ti: LiNbO3. Electron Lett 25(23):1608–1609

    Article  Google Scholar 

  17. Mule AV et al (2004) Photopolymer-based diffractive and MMI waveguide couplers. IEEE Photonic Tech Lett 16(11):2490–2492

    Article  Google Scholar 

  18. Ibrahim MH et al (2007) A novel 1 × 2 multimode interference optical wavelength filter based on photodefinable benzocyclobuene polymer. J Microwave Optic Tech Lett 49(5):1024–1028

    Google Scholar 

  19. Chan HP et al (2003) A wide angle X-junction polymeric thermo optic digital switch with low crosstalk. IEEE Photonic Tech Lett 15(9):1210–1212

    Article  Google Scholar 

  20. Chin MK et al (2005) High-index-contrast waveguides and devices. Appl Opt 44(15):3077–3086

    Article  Google Scholar 

  21. Nishihara H, Haruna M, Suhara T (1989) Optical integrated circuits. McGraw-Hill, New York

    Google Scholar 

  22. Miya T (2000) Silica-based planar lightwave circuits: passive and thermally active devices. IEEE J Sel Top Quantum Electron 6(1):38–45

    Article  Google Scholar 

  23. Yamada H et al (2006) Si photonic wire waveguide devices. IEEE J Sel Top Quantum Electron 12(6):1371–1379

    Article  Google Scholar 

  24. Kashahara R et al (2002) New structures of silica-based planar light wave circuits for low power thermooptic switch and its application to 8 × 8 optical matrix switch. J Lightwave Technol 20(6):993–1000

    Article  Google Scholar 

  25. Worhoff K et al (1999) Design, tolerance analysis and fabrication of silicon oxynitride based planar optical waveguides for communication devices. J Lightwave Technol 17(8):1401–1407

    Article  Google Scholar 

  26. Bona GL et al (2003) SiON high refractive-index waveguide and planar lightwave circuit. IBM J Res Dev 47(2.3):239–249

    Google Scholar 

  27. Chen K, Chan HP (2012) Silicon oxynitride optical waveguide ring resonator utilizing a two-mode interference structure. Int J Photoenergy. doi:10.1155/2012/496267

    Google Scholar 

  28. Kumar D, Singh V (2011) Theoretical modeling of a nonlinear asymmetric metal-clad planar waveguide based sensors. Optik 122(20):1872–1875

    Article  Google Scholar 

  29. Taya SA et al (2009) Enhancement of sensitivity in optical waveguide sensors using left–handed materials. Optik 120(10):504–508

    Article  Google Scholar 

  30. Karasinski P (2009) Planar optical waveguide sensor structures with grating couplers. Acta Phys Polon A 116:30–32

    Article  Google Scholar 

  31. Carlos AB (2009) Optical slot-waveguide based biochemical sensors. Sensors 9(6):4751–4765

    Article  Google Scholar 

  32. Densmore A et al (2006) A silicon-on-insulator photonic wire based evanescent field sensor. IEEE Photonic Technol Lett 18(23):2520–2522

    Article  Google Scholar 

  33. Karasinski P (2011) Optical uniform/gradient waveguide sensor structure characterization. Opto-Electron Rev 19(1):01–09

    Article  Google Scholar 

  34. Parriaux O, Dierauer P (1994) Normalized expressions for the optical sensitivity of evanescent wave sensors: erratum. Opt Lett 19(20):1665–1665

    Google Scholar 

  35. Taya SA et al (2009) Enhancement of sensitivity in optical waveguide sensors using left–handed materials. Optik 120(10):504–508

    Article  Google Scholar 

  36. Renling Z et al (2010) The sensing structure optimization of planer optical waveguide with fermi refractive index. J Lightwave Technol 28(23):3439–3443

    Google Scholar 

  37. Yimit A et al (2005) Thin film composite optical waveguides for sensor applications: a review. Talanta 65(25):1102–1109

    Article  Google Scholar 

  38. Airoudj A et al (2008) Design and sensing properties of an integrated optical gas sensor based on a multilayer structure. J Anal Chem 80(23):9188–9194

    Article  Google Scholar 

  39. Veldhuis GJ et al (2000) Sensitivity enhancement in evanescent optical waveguide sensors. J Lightwave Technol 18(5):677–682

    Article  Google Scholar 

  40. Passaro VMN, Dell‟olio F (2007) Guided-wave optical biosensors. Sensors 7(4):508–536

    Article  Google Scholar 

  41. Taya SA et al (2008) Theoretical analysis of TM nonlinear asymmetrical waveguide optical sensors. Sens Actuators A Phys 147:137–141

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aradhana Dutta .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dutta, A. (2016). Introduction to Planar Waveguide Optical Sensor. In: Planar Waveguide Optical Sensors. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-35140-7_1

Download citation

Publish with us

Policies and ethics