Skip to main content

PACAP-Derived Carriers: Mechanisms and Applications

  • Chapter
  • First Online:
Book cover Pituitary Adenylate Cyclase Activating Polypeptide — PACAP

Part of the book series: Current Topics in Neurotoxicity ((Current Topics Neurotoxicity,volume 11))

Abstract

One of the main problems in therapeutic efficiency lies in the crossing of physiological barriers and cellular membranes. Therefore, significant efforts have been made to develop agents that cross these barriers and deliver therapeutic agents into intracellular compartments. In recent years, a large amount of data on the use of peptides as delivery agents has accumulated. Among the known cell-penetrating peptides (CPP), sequences derived from the native peptide hormone pituitary adenylate cyclase-activating polypeptide (PACAP) have recently proven to translocate different bioactive molecules across cellular membranes. PACAP, a hypophysiotropic neurohormone, participates in the regulation of multiple functions. The recent discovery of intracellular PACAP receptors in the brain and the testis as well as the physicochemical characteristics of PACAP, i.e., extended α-helix containing basic residues, prompted the evaluation of its cell-penetrating properties in a receptor-independent manner. In this review, we cover the current knowledge concerning the structural requirements, mechanistic assumptions, and metabolic features of these peptides as well as experiments demonstrating their unique carrier potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BBB:

Blood–brain barrier

BiFC:

Bimolecular fluorescence complementation

cAMP:

Cyclic adenosine monophosphate

CNS:

Central nervous system

CPP:

Cell-penetrating peptides

Disc:

1,3-dihydro-2H-isoindole carboxylic acid

DPC:

Dodecylphosphocholine

DPP IV:

Dipeptidylpeptidase IV

FITC:

Fluorescein isothiocyanate

GAGs:

Glycosaminoglycans

GPCR:

G protein-coupled receptors

hCT:

Human calcitonin

LDH:

Lactate dehydrogenase

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

NEP:

Neutral endopeptidase

PAC1:

Pituitary adenylate cyclase-activating polypeptide type 1 receptor

PACAP:

Pituitary adenylate cyclase-activating polypeptide

PACAP27:

27-amino acid isoform of PACAP

PACAP38:

38-amino acid isoform of PACAP

PTS-6:

Peptide transport system-6

VIP:

Vasoactive intestinal peptide

VPAC1:

VIP/PACAP type 1 receptor

VPAC2:

VIP/PACAP type 2 receptor

References

  1. Copolovici DM, Langel K, Eriste E, Langel U. Cell-penetrating peptides: design, synthesis, and applications. ACS Nano. 2014;8:1972–94.

    Google Scholar 

  2. Bechara C, Sagan S. Cell-penetrating peptides: 20 years later, where do we stand? FEBS Lett. 2013;587:1693–702.

    Article  CAS  PubMed  Google Scholar 

  3. Rodriguez-Devora JI, Ambure S, Shi ZD, Yuan Y, Sun W, Xui T. Physically facilitating drug-delivery systems. Ther Deliv. 2012;3:125–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tiwari G, Tiwari R, Sriwastawa B, Bhati L, Pandey S, Pandey P, et al. Drug delivery systems: an updated review. Int J Pharm Invest. 2012;2(1):2–11.

    Article  Google Scholar 

  5. Accardo A, Aloj L, Aurilio M, Morelli G, Tesauro D. Receptor binding peptides for target-selective delivery of nanoparticles encapsulated drugs. Int J Nanomed. 2014;9:1537–57.

    Google Scholar 

  6. Medina-Kauwe LK. Development of adenovirus capsid proteins for targeted therapeutic delivery. Ther Deliv. 2013;4:267–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Heitz F, Morris MC, Divita G. Twenty years of cell-penetrating peptides: from molecular mechanisms to therapeutics. Br J Pharmacol. 2009;157:195–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Juliano RL, Alam R, Dixit V, Kang HM. Cell-targeting and cell-penetrating peptides for delivery of therapeutic and imaging agents. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2009;1:324–35.

    Article  CAS  PubMed  Google Scholar 

  9. Elliott G, O’Hare P. Intercellular trafficking and protein delivery by a herpesvirus structural protein. Cell. 1997;88:223–33.

    Article  CAS  PubMed  Google Scholar 

  10. Lindgren M, Hallbrink M, Prochiantz A, Langel U. Cell-penetrating peptides. Trends Pharmacol Sci. 2000;21:99–103.

    Article  CAS  PubMed  Google Scholar 

  11. Montrose K, Yang Y, Sun X, Wiles S, Krissansen GW. Xentry, a new class of cell-penetrating peptide uniquely equipped for delivery of drugs. Sci Rep. 2013;3:1661.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Nakase I, Hirose H, Tanaka G, Tadokoro A, Kobayashi S, Takeuchi T, et al. Cell-surface accumulation of flock house virus-derived peptide leads to efficient internalization via macropinocytosis. Mol Ther. 2009;17:1868–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Soomets U, Lindgren M, Gallet X, Hallbrink M, Elmquist A, Balaspiri L, et al. Deletion analogues of transportan. Biochim Biophys Acta. 2000;1467:165–76.

    Article  CAS  PubMed  Google Scholar 

  14. Pooga M, Hallbrink M, Zorko M, Langel U. Cell penetration by transportan. FASEB J. 1998;12:67–77.

    CAS  PubMed  Google Scholar 

  15. Farkhani SM, Valizadeh A, Karami H, Mohammadi S, Sohrabi N, Badrzadeh F. Cell penetrating peptides: efficient vectors for delivery of nanoparticles, nanocarriers, therapeutic and diagnostic molecules. Peptides. 2014;57:78–94.

    Article  CAS  PubMed  Google Scholar 

  16. Marinova Z, Vukojevic V, Surcheva S, Yakovleva T, Cebers G, Pasikova N, et al. Translocation of dynorphin neuropeptides across the plasma membrane. A putative mechanism of signal transmission. J Biol Chem. 2005;280:26360–70.

    Article  CAS  PubMed  Google Scholar 

  17. Schmidt MC, Rothen-Rutishauser B, Rist B, Beck-Sickinger A, Wunderli-Allenspach H, Rubas W, et al. Translocation of human calcitonin in respiratory nasal epithelium is associated with self-assembly in lipid membrane. Biochemistry. 1998;37:16582–90.

    Article  CAS  PubMed  Google Scholar 

  18. Miyata A, Arimura A, Dahl RR, Minamino N, Uehara A, Jiang L, et al. Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem Biophys Res Commun. 1989;164:567–74.

    Google Scholar 

  19. Miyata A, Jiang L, Dahl RD, Kitada C, Kubo K, Fujino M, et al. Isolation of a neuropeptide corresponding to the N-terminal 27 residues of the pituitary adenylate cyclase activating polypeptide with 38 residues (PACAP38). Biochem Biophys Res Commun. 1990;170:643–8.

    Article  CAS  PubMed  Google Scholar 

  20. Vaudry D, Falluel-Morel A, Bourgault S, Basille M, Burel D, Wurtz O, et al. Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery. Pharmacol Rev. 2009;61:283–357.

    Article  CAS  PubMed  Google Scholar 

  21. Arimura A, Somogyvari-Vigh A, Miyata A, Mizuno K, Coy DH, Kitada C. Tissue distribution of PACAP as determined by RIA: highly abundant in the rat brain and testes. Endocrinology. 1991;129:2787–9.

    Article  CAS  PubMed  Google Scholar 

  22. Koves K, Arimura A, Gorcs TG, Somogyvari-Vigh A. Comparative distribution of immunoreactive pituitary adenylate cyclase activating polypeptide and vasoactive intestinal polypeptide in rat forebrain. Neuroendocrinology. 1991;54:159–69.

    Article  CAS  PubMed  Google Scholar 

  23. Ghatei MA, Takahashi K, Suzuki Y, Gardiner J, Jones PM, Bloom SR. Distribution, molecular characterization of pituitary adenylate cyclase-activating polypeptide and its precursor encoding messenger RNA in human and rat tissues. J Endocrinol. 1993;136:159–66.

    Article  CAS  PubMed  Google Scholar 

  24. Bourgault S, Chatenet D, Wurtz O, Doan ND, Leprince J, Vaudry H, et al. Strategies to convert PACAP from a hypophysiotropic neurohormone into a neuroprotective drug. Curr Pharm Des. 2011;17:1002–24.

    Article  CAS  PubMed  Google Scholar 

  25. Seaborn T, Masmoudi-Kouli O, Fournier A, Vaudry H, Vaudry D. Protective effects of pituitary adenylate cyclase-activating polypeptide (PACAP) against apoptosis. Curr Pharm Des. 2011;17:204–14.

    Article  CAS  PubMed  Google Scholar 

  26. Boivin B, Vaniotis G, Allen BG, Hebert TE. G protein-coupled receptors in and on the cell nucleus: a new signaling paradigm? J Recept Signal Transduct Res. 2008;28:15–28.

    Article  CAS  PubMed  Google Scholar 

  27. Re RN, Cook JL. The intracrine hypothesis: an update. Regul Pept. 2006;133:1–9.

    Article  CAS  PubMed  Google Scholar 

  28. Tominaga A, Sugawara H, Futagawa T, Inoue K, Sasaki K, Minamino N, et al. Characterization of the testis-specific promoter region in the human pituitary adenylate cyclase-activating polypeptide (PACAP) gene. Genes Cells. 2010;15:595–606.

    CAS  PubMed  Google Scholar 

  29. Li M, Funahashi H, Mbikay M, Shioda S, Arimura A. Pituitary adenylate cyclase activating polypeptide-mediated intracrine signaling in the testicular germ cells. Endocrine. 2004;23:59–75.

    Article  CAS  PubMed  Google Scholar 

  30. Valdehita A, Bajo AM, Fernandez-Martinez AB, Arenas MI, Vacas E, Valenzuela P, et al. Nuclear localization of vasoactive intestinal peptide (VIP) receptors in human breast cancer. Peptides. 2010;31:2035–45.

    Article  CAS  PubMed  Google Scholar 

  31. Omary MB, Kagnoff MF. Identification of nuclear receptors for VIP on a human colonic adenocarcinoma cell line. Science. 1987;238:1578–81.

    Article  CAS  PubMed  Google Scholar 

  32. Doan ND, Chatenet D, Letourneau M, Vaudry H, Vaudry D, Fournier A. Receptor-independent cellular uptake of pituitary adenylate cyclase-activating polypeptide. Biochim Biophys Acta. 1823;2012:940–9.

    Google Scholar 

  33. Yu R, Zhong J, Li M, Guo X, Zhang H, Chen J. PACAP induces the dimerization of PAC1 on the nucleus associated with the cAMP increase in the nucleus. Neurosci Lett. 2013;549:92–6.

    Article  CAS  PubMed  Google Scholar 

  34. Doan ND, Letourneau M, Vaudry D, Doucet N, Folch B, Vaudry H, et al. Design and characterization of novel cell-penetrating peptides from pituitary adenylate cyclase-activating polypeptide. J Control Release. 2012;163:256–65.

    Article  CAS  PubMed  Google Scholar 

  35. Tchoumi Neree A, Nguyen PT, Chatenet D, Fournier A, Bourgault S. Secondary conformational conversion is involved in glycosaminoglycans-mediated cellular uptake of the cationic cell-penetrating peptide PACAP. FEBS Lett. 2014;588:4590–6.

    Article  CAS  PubMed  Google Scholar 

  36. Umetsu Y, Tenno T, Goda N, Shirakawa M, Ikegami T, Hiroaki H. Structural difference of vasoactive intestinal peptide in two distinct membrane-mimicking environments. Biochim Biophys Acta. 1814;2011:724–30.

    Google Scholar 

  37. Bourgault S, Vaudry D, Dejda A, Doan ND, Vaudry H, Fournier A. Pituitary adenylate cyclase-activating polypeptide: focus on structure-activity relationships of a neuroprotective peptide. Curr Med Chem. 2009;16:4462–80.

    Article  CAS  PubMed  Google Scholar 

  38. Sze KH, Zhou H, Yang Y, He M, Jiang Y, Wong AO. Pituitary adenylate cyclase-activating polypeptide (PACAP) as a growth hormone (GH)-releasing factor in grass carp: II. Solution structure of a brain-specific PACAP by nuclear magnetic resonance spectroscopy and functional studies on GH release and gene expression. Endocrinology. 2007;148:5042–59.

    Article  CAS  PubMed  Google Scholar 

  39. Trehin R, Krauss U, Beck-Sickinger AG, Merkle HP, Nielsen HM. Cellular uptake but low permeation of human calcitonin-derived cell penetrating peptides and Tat(47-57) through well-differentiated epithelial models. Pharm Res. 2004;21:1248–56.

    Article  CAS  PubMed  Google Scholar 

  40. Drin G, Cottin S, Blanc E, Rees AR, Temsamani J. Studies on the internalization mechanism of cationic cell-penetrating peptides. J Biol Chem. 2003;278:31192–201.

    Article  CAS  PubMed  Google Scholar 

  41. Foerg C, Ziegler U, Fernandez-Carneado J, Giralt E, Merkle HP. Differentiation restricted endocytosis of cell penetrating peptides in MDCK cells corresponds with activities of Rho-GTPases. Pharm Res. 2007;24:628–42.

    Article  CAS  PubMed  Google Scholar 

  42. Zhang X, Wan L, Pooyan S, Su Y, Gardner CR, Leibowitz MJ, et al. Quantitative assessment of the cell penetrating properties of RI-Tat-9: evidence for a cell type-specific barrier at the plasma membrane of epithelial cells. Mol Pharm. 2004;1:145–55.

    Article  CAS  PubMed  Google Scholar 

  43. Wray V, Kakoschke C, Nokihara K, Naruse S. Solution structure of pituitary adenylate cyclase activating polypeptide by nuclear magnetic resonance spectroscopy. Biochemistry. 1993;32:5832–41.

    Article  CAS  PubMed  Google Scholar 

  44. Milletti F. Cell-penetrating peptides: classes, origin, and current landscape. Drug Discov Today. 2012;17:850–60.

    Article  CAS  PubMed  Google Scholar 

  45. Green M, Ishino M, Loewenstein PM. Mutational analysis of HIV-1 Tat minimal domain peptides: identification of trans-dominant mutants that suppress HIV-LTR-driven gene expression. Cell. 1989;58:215–23.

    Article  CAS  PubMed  Google Scholar 

  46. Jones AT, Sayers EJ. Cell entry of cell penetrating peptides: tales of tails wagging dogs. J Control Release. 2012;161:582–91.

    Article  CAS  PubMed  Google Scholar 

  47. Favretto ME, Wallbrecher R, Schmidt S, van de Putte R, Brock R. Glycosaminoglycans in the cellular uptake of drug delivery vectors—bystanders or active players? J Control Release. 2014;180:81–90.

    Article  CAS  PubMed  Google Scholar 

  48. Esko JD, Stewart TE, Taylor WH. Animal cell mutants defective in glycosaminoglycan biosynthesis. Proc Natl Acad Sci U S A. 1985;82:3197–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mern DS, Hoppe-Seyler K, Hoppe-Seyler F, Hasskarl J, Burwinkel B. Targeting Id1 and Id3 by a specific peptide aptamer induces E-box promoter activity, cell cycle arrest, and apoptosis in breast cancer cells. Breast Cancer Res Treat. 2010;124:623–33.

    Article  CAS  PubMed  Google Scholar 

  50. Simeoni F, Morris MC, Heitz F, Divita G. Insight into the mechanism of the peptide-based gene delivery system MPG: implications for delivery of siRNA into mammalian cells. Nucleic Acids Res. 2003;31:2717–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Banks WA, Kastin AJ, Komaki G, Arimura A. Pituitary adenylate cyclase activating polypeptide (PACAP) can cross the vascular component of the blood-testis barrier in the mouse. J Androl. 1993;14:170–3.

    CAS  PubMed  Google Scholar 

  52. Banks WA, Kastin AJ, Komaki G, Arimura A. Passage of pituitary adenylate cyclase activating polypeptide1-27 and pituitary adenylate cyclase activating polypeptide1-38 across the blood-brain barrier. J Pharmacol Exp Ther. 1993;267:690–6.

    CAS  PubMed  Google Scholar 

  53. Spencer BJ, Verma IM. Targeted delivery of proteins across the blood-brain barrier. Proc Natl Acad Sci U S A. 2007;104:7594–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dogrukol-Ak D, Tore F, Tuncel N. Passage of VIP/PACAP/secretin family across the blood-brain barrier: therapeutic effects. Curr Pharm Des. 2004;10:1325–40.

    Article  CAS  PubMed  Google Scholar 

  55. Nonaka N, Banks WA, Mizushima H, Shioda S, Morley JE. Regional differences in PACAP transport across the blood-brain barrier in mice: a possible influence of strain, amyloid beta protein, and age. Peptides. 2002;23:2197–202.

    Article  CAS  PubMed  Google Scholar 

  56. Uchida D, Arimura A, Somogyvari-Vigh A, Shioda S, Banks WA. Prevention of ischemia-induced death of hippocampal neurons by pituitary adenylate cyclase activating polypeptide. Brain Res. 1996;736:280–6.

    Article  CAS  PubMed  Google Scholar 

  57. Mizushima H, Banks WA, Dohi K, Shioda S, Matsumoto H, Matsumoto K. The effect of cardiac arrest on the permeability of the mouse blood-brain and blood-spinal cord barrier to pituitary adenylate cyclase activating polypeptide (PACAP). Peptides. 1999;20:1337–40.

    Article  CAS  PubMed  Google Scholar 

  58. Somogyvari-Vigh A, Pan W, Reglodi D, Kastin AJ, Arimura A. Effect of middle cerebral artery occlusion on the passage of pituitary adenylate cyclase activating polypeptide across the blood-brain barrier in the rat. Regul Pept. 2000;91:89–95.

    Article  CAS  PubMed  Google Scholar 

  59. Zhu L, Tamvakopoulos C, Xie D, Dragovic J, Shen X, Fenyk-Melody JE, et al. The role of dipeptidyl peptidase IV in the cleavage of glucagon family peptides: in vivo metabolism of pituitary adenylate cyclase activating polypeptide-(1-38). J Biol Chem. 2003;278:22418–23.

    Article  CAS  PubMed  Google Scholar 

  60. Lambeir AM, Durinx C, Proost P, Van Damme J, Scharpe S, De Meester I. Kinetic study of the processing by dipeptidyl-peptidase IV/CD26 of neuropeptides involved in pancreatic insulin secretion. FEBS Lett. 2001;507:327–30.

    Article  CAS  PubMed  Google Scholar 

  61. Gourlet P, Vandermeers A, Robberecht P, Deschodt-Lanckman M. Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating peptide (PACAP-27, but not PACAP-38) degradation by the neutral endopeptidase EC 3.4.24.11. Biochem Pharmacol. 1997;54:509–15.

    Article  CAS  PubMed  Google Scholar 

  62. Bourgault S, Vaudry D, Botia B, Couvineau A, Laburthe M, Vaudry H, et al. Novel stable PACAP analogs with potent activity towards the PAC1 receptor. Peptides. 2008;29:919–32.

    Article  CAS  PubMed  Google Scholar 

  63. Tams JW, Johnsen AH, Fahrenkrug J. Identification of pituitary adenylate cyclase-activating polypeptide1-38-binding factor in human plasma, as ceruloplasmin. Biochem J. 1999;341:271–6.

    Google Scholar 

  64. Birk S, Sitarz JT, Petersen KA, Oturai PS, Kruuse C, Fahrenkrug J, et al. The effect of intravenous PACAP38 on cerebral hemodynamics in healthy volunteers. Regul Pept. 2007;140:185–91.

    Article  CAS  PubMed  Google Scholar 

  65. Li M, Maderdrut JL, Lertora JJ, Batuman V. Intravenous infusion of pituitary adenylate cyclase-activating polypeptide (PACAP) in a patient with multiple myeloma and myeloma kidney: a case study. Peptides. 2007;28:1891–5.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Canadian Institutes of Health Research (AF; FRN102734), the Fonds de recherche du Québec-Nature et technologies (DC; 188882), and the Natural Sciences and Engineering Research Council of Canada (SB; 1557119).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Chatenet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chatenet, D., Fournier, A., Bourgault, S. (2016). PACAP-Derived Carriers: Mechanisms and Applications. In: Reglodi, D., Tamas, A. (eds) Pituitary Adenylate Cyclase Activating Polypeptide — PACAP. Current Topics in Neurotoxicity, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-35135-3_9

Download citation

Publish with us

Policies and ethics