Skip to main content

PACAP and Learning in Invertebrates

  • Chapter
  • First Online:
  • 540 Accesses

Part of the book series: Current Topics in Neurotoxicity ((Current Topics Neurotoxicity,volume 11))

Abstract

As one of the greatest achievements of medicine in the twentieth century, there has been a dramatic increase in life expectancy and this tendency continues even more rapidly in the twenty-first century. However, this positive achievement also has some negative consequences. The number of patients with clinical memory deficits, including those associated with Alzheimer’s and Parkinson’s diseases, is also on the rise and there is an urgent need for novel drugs and treatment methods. Neuropeptides are widely distributed in regions of the mammalian brain involved in learning and memory and represent targets of memory research. PACAP is one of the peptides that has been found to be vital in memory formation both in vertebrates and invertebrates and provides a promising avenue for research. The use of genetically and physiologically tractable invertebrate model systems will likely lead to the elucidation of fundamental cellular and molecular processes induced by PACAP, due to the numerical simplicity of the brain structures involved. The fruit fly (Drosophila melanogaster) and the pond snail (Lymnaea stagnalis) are two prominent invertebrate model systems that so far have provided valuable insights into the role of PACAP in ageing and memory-related processes, therefore this chapter concentrates on these species.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Miyata A, Arimura A, Dahl RR, Minamino N, Uehara A, Jiang L, et al. Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem Biophys Res Commun. 1989;16(164):567–74.

    Article  Google Scholar 

  2. Basille M, Vaudry D, Coulouarn Y, Jegou S, Lihrmann I, Fournier A, et al. Comparative distribution of pituitary adenylate cyclase-activating polypeptide (PACAP) binding sites and PACAP receptor mRNAs in the rat brain during development. J Comp Neurol. 2000;425:495–509.

    Article  CAS  PubMed  Google Scholar 

  3. Vaudry D, Falluel-Morel A, Bourgault S, Basille M, Burel D, Wurtz O, et al. Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery. Pharmacol Rev. 2009;61:283–357.

    Article  CAS  PubMed  Google Scholar 

  4. McRory J, Sherwood NM. Two protochordate genes encode pituitary adenylate cyclase-activating polypeptide and related family members. Endocrinology. 1997;138:2380–90.

    CAS  PubMed  Google Scholar 

  5. Zhong Y, Pena LA. A novel synaptic transmission mediated by a PACAP-like neuropeptide in Drosophila. Neuron. 1995;14:527–36.

    Article  CAS  PubMed  Google Scholar 

  6. Ohtaki T, Ogi K, Kitada C, Hinuma S, Onda H. Purification of recombinant human pituitary adenylate cyclase-activating polypeptide receptor expressed in Sf9 insect cells. Ann N Y Acad Sci. 1996;805:590–4.

    Article  CAS  PubMed  Google Scholar 

  7. Lugo JM, Carpio Y, Morales R, Rodriguez-Ramos T, Ramos L, Estrada MP. First report of the pituitary adenylate cyclase activating polypeptide (PACAP) in crustaceans: conservation of its functions as growth promoting factor and immunomodulator in the white shrimp Litopenaeus vannamei. Fish Shellfish Immunol. 2013;35:1788–96.

    Article  CAS  PubMed  Google Scholar 

  8. Hernádi L, Pirger Z, Kiss T, Németh J, Márk L, Kiss P, et al. The presence and distribution of pituitary adenylate cyclase activating polypeptide and its receptor in the snail Helix pomatia. Neuroscience. 2008;155:387–402.

    Article  PubMed  Google Scholar 

  9. Reglődi D, Lengvári I, Szelier M, Vigh S, Arimura A. Distribution of PACAP-like immunoreactivity in the nervous system of oligochaeta. Peptides. 2000;21:183–8.

    Article  PubMed  Google Scholar 

  10. Pirger Z, László Z, Hiripi L, Hernádi L, Tóth G, Lubics A, et al. Pituitary adenylate cyclase activating polypeptide (PACAP) and its receptors are present and biochemically active in the central nervous system of the pond snail Lymnaea stagnalis. J Mol Neurosci. 2010;42:464–71.

    Article  CAS  PubMed  Google Scholar 

  11. Feany MB, Quinn WG. A neuropeptide gene defined by the Drosophila memory mutant amnesiac. Science. 1995;268:869–73.

    Article  CAS  PubMed  Google Scholar 

  12. Hoyle CHV. Neuropeptide families: evolutionary perspectives. Regul Pept. 1998;73:1–33.

    Article  CAS  PubMed  Google Scholar 

  13. Roberto M, Brunelli M. PACAP-38 enhances excitatory synaptic transmission in the rat hippocampal CA1 region. Learn Mem. 2000;7:303–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Quinn WG, Sziber PP, Booker R. The Drosophila memory mutant amnesiac. Nature. 1979;277:212–4.

    Article  CAS  PubMed  Google Scholar 

  15. Waddell S, Armstrong JD, Kitamoto T, Kaiser K, Quinn WG. The amnesiac gene product is expressed in two neurons in the Drosophila brain that are critical for memory. Cell. 2000;103:805–13.

    Article  CAS  PubMed  Google Scholar 

  16. Tamura T, Chiang AS, Ito N, Liu HP, Horiuchi J, Tully T, et al. Aging specifically impairs amnesiac-dependent memory in Drosophila. Neuron. 2003;40:1003–11.

    Article  CAS  PubMed  Google Scholar 

  17. Keene AC, Krashes MJ, Leung B, Bernard JA, Waddell S. Drosophila dorsal paired medial neurons provide a general mechanism for memory consolidation. Curr Biol. 2006;16:1524–30.

    Article  CAS  PubMed  Google Scholar 

  18. Dubnau J, Grady L, Kitamoto T, Tully T. Disruption of neurotransmission in Drosophila mushroom body blocks retrieval but not acquisition of memory. Nature. 2001;411:476–80.

    Article  CAS  PubMed  Google Scholar 

  19. DeZazzo J, Xia S, Christensen J, Velinzon K, Tully T. Developmental expression of an amn(+) transgene rescues the mutant memory defect of amnesiac adults. J Neurosci. 1999;19:8740–6.

    CAS  PubMed  Google Scholar 

  20. Michel M, Kemenes I, Müller U, Kemenes G. Different phases of long-term memory require distinct temporal patterns of PKA activity after single-trial classical conditioning. Learn Mem. 2008;15(9):694–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kemenes G, Kemenes I, Michel M, Papp A, Müller U. Phase-dependent molecular requirements for memory reconsolidation: differential roles for protein synthesis and protein kinase A activity. J Neurosci. 2006;26:6298–302.

    Article  CAS  PubMed  Google Scholar 

  22. Kandel ER. The molecular biology of memory storage: a dialogue between genes and synapses. Science. 2001;294:1030–8.

    Article  CAS  PubMed  Google Scholar 

  23. Margulies C, Tully T, Dubnau J. Deconstructing memory in Drosophila. Curr Biol. 2005;15:R700–13.

    Google Scholar 

  24. Pirger Z, László Z, Kemenes I, Tóth G, Reglődi D, Kemenes G. A homolog of the vertebrate pituitary adenylate cyclase-activating polypeptide is both necessary and instructive for the rapid formation of associative memory in an invertebrate. J Neurosci. 2010;30:13766–73.

    Article  CAS  PubMed  Google Scholar 

  25. Kemenes G, Benjamin PR. Appetitive learning in snails shows characteristics of conditioning in vertebrates. Brain Res. 1989;489:163–6.

    Article  CAS  PubMed  Google Scholar 

  26. Trudeau LE, Castellucci VF. Contribution of polysynaptic pathways in the mediation and plasticity of Aplysia gill and siphon withdrawal reflex: evidence for differential modulation. J Neurosci. 1992;12:3838–48.

    CAS  PubMed  Google Scholar 

  27. Nargeot R, Baxter DA, Patterson GW, Byrne JH. Dopaminergic synapses mediate neuronal changes in an analogue of operant conditioning. J Neurophysiol. 1999;81:1983–7.

    CAS  PubMed  Google Scholar 

  28. Brembs B, Lorenzetti FD, Reyes FD, Baxter DA, Byrne JH. Operant reward learning in Aplysia: neuronal correlates and mechanisms. Science. 2002;296:1706–9.

    Article  CAS  PubMed  Google Scholar 

  29. Kemenes I, Straub VA, Nikitin ES, Staras K, O’Shea M, Kemenes G, et al. Role of delayed nonsynaptic neuronal plasticity in long-term associative memory. Curr Biol. 2006;16:1269–79.

    Article  CAS  PubMed  Google Scholar 

  30. Jones NG, Kemenes I, Kemenes G, Benjamin PR. A persistent cellular change in a single modulatory neuron contributes to associative long-term memory. Curr Biol. 2003;13:1064–9.

    Article  CAS  PubMed  Google Scholar 

  31. Hermann PM, Lee A, Hulliger S, Minvielle M, Ma B, Wildering WC. Impairment of long-term associative memory in aging snails (Lymnaea stagnalis). Behav Neurosci. 2007;121:1400–14.

    Article  PubMed  Google Scholar 

  32. Audesirk TE, Alexander Jr JE, Audesirk GJ, Moyer CM. Rapid, nonaversive conditioning in a freshwater gastropod. I. Effects of age and motivation. Behav Neural Biol. 1982;36:379–90.

    Article  CAS  PubMed  Google Scholar 

  33. Pirger Z, Naskar S, László Z, Kemenes G, Reglődi D, Kemenes I. Reversal of age-related learning deficiency by the vertebrate PACAP and IGF-1 in a novel invertebrate model of aging: the pond snail (Lymnaea stagnalis). J Gerontol A Biol Sci Med Sci. 2014;69:1331–8.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Delcourt N, Thouvenot E, Chanrion B, Galeotti N, Jouin P, Bockaert J, et al. PACAP type I receptor transactivation is essential for IGF-1 receptor signalling and antiapoptotic activity in neurons. EMBO J. 2007;26:1542–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kemenes I, Kemenes G, Andrew RJ, Benjamin PR, O’Shea M. Critical time-window for NO-cGMP-dependent long-term memory formation after one-trial appetitive conditioning. J Neurosci. 2002;22:1414–25.

    CAS  PubMed  Google Scholar 

  36. Korneev SA, Straub V, Kemenes I, Korneeva EI, Ott SR, Benjamin PR, et al. Timed and targeted differential regulation of nitric oxide synthase (NOS) and anti-NOS genes by reward conditioning leading to long-term memory formation. J Neurosci. 2005;25:1188–92.

    Article  CAS  PubMed  Google Scholar 

  37. Staras K, Győri J, Kemenes G. Voltage-gated ionic currents in an identified modulatory cell type controlling molluscan feeding. Eur J Neurosci. 2002;15:109–19.

    Article  PubMed  Google Scholar 

  38. Nikitin ES, Vavoulis DV, Kemenes I, Marra V, Pirger Z, Michel M, et al. Persistent sodium current is a nonsynaptic substrate for long-term associative memory. Curr Biol. 2008;18:1221–6.

    Article  CAS  PubMed  Google Scholar 

  39. Ribeiro MJ, Serfőző Z, Papp A, Kemenes I, O’Shea M, Yin JC, et al. Cyclic AMP response element-binding (CREB)-like proteins in a molluscan brain: cellular localization and learning-induced phosphorylation. Eur J Neurosci. 2003;18:1223–34.

    Article  PubMed  Google Scholar 

  40. Sadamoto H, Sato H, Kobayashi S, Murakami J, Aonuma H, Ando H, et al. CREB in the pond snail Lymnaea stagnalis: cloning, gene expression, and function in identifiable neurons of the central nervous system. J Neurobiol. 2004;58:455–66.

    Article  CAS  PubMed  Google Scholar 

  41. Hatakeyama D, Fujito Y, Sakakibara M, Ito E. Expression and distribution of transcription factor CCAAT/enhancer-binding protein in the central nervous system of Lymnaea stagnalis. Cell Tissue Res. 2004;318:631–41.

    Article  CAS  PubMed  Google Scholar 

  42. Fulton D, Kemenes I, Andrew RJ, Benjamin PR. A single time-window for protein synthesis-dependent long-term memory formation after one-trial appetitive conditioning. Eur J Neurosci. 2005;21:1347–58.

    Article  PubMed  Google Scholar 

  43. Ribeiro MJ, Schofield MG, Kemenes I, O’Shea M, Kemenes G, Benjamin PR. Activation of MAPK is necessary for long-term memory consolidation following food-reward conditioning. Learn Mem. 2005;12:538–45.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Nikitin ES, Kiss T, Staras K, O’Shea M, Benjamin PR, Kemenes G. Persistent sodium current is a target for cAMP-induced neuronal plasticity in a state-setting modulatory interneuron. J Neurophysiol. 2006;95:453–63.

    Article  CAS  PubMed  Google Scholar 

  45. Ribeiro M, Straub VA, Schofield M, Picot J, Benjamin PR, O’Shea M, et al. Characterization of NO-sensitive guanylyl cyclase: expression in an identified interneuron involved in NO-cGMP-dependent memory formation. Eur J Neurosci. 2008;28:1157–65.

    Article  PubMed  Google Scholar 

  46. Wan H, Mackay B, Iqbal H, Naskar S, Kemenes G. Delayed intrinsic activation of an NMDA-independent CaM-kinase II in a critical time window is necessary for late consolidation of an associative memory. J Neurosci. 2010;30:56–63.

    Article  CAS  PubMed  Google Scholar 

  47. Naskar S, Wan H, Kemenes G. pT305-CaMKII stabilizes a learning-induced increase in AMPA receptors for ongoing memory consolidation after classical conditioning. Nat Commun. 2014;5:3967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bhattacharya A, Lakhman SS, Singh S. Modulation of L-type calcium channels in Drosophila via a pituitary adenylyl cyclase-activating polypeptide (PACAP)-mediated pathway. J Biol Chem. 2004;279:37291–7.

    Article  CAS  PubMed  Google Scholar 

  49. Zhou CJ, Shioda S, Yada T, Inagaki N, Pleasure SJ, Kikuyama S. PACAP and its receptors exert pleiotropic effects in the nervous system by activating multiple signaling pathways. Curr Protein Pept Sci. 2002;3:423–39.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I.K.’s original research has been funded by the Biology and Biotechnology Research Council (BBSRC, UK). G.K.’s original research was funded by the Medical Research Council (MRC, UK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ildiko Kemenes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kemenes, I., Kemenes, G. (2016). PACAP and Learning in Invertebrates. In: Reglodi, D., Tamas, A. (eds) Pituitary Adenylate Cyclase Activating Polypeptide — PACAP. Current Topics in Neurotoxicity, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-35135-3_4

Download citation

Publish with us

Policies and ethics