Skip to main content

Pituitary Adenylate Cyclase-Activating Polypeptide in the Auditory System

  • Chapter
  • First Online:
Pituitary Adenylate Cyclase Activating Polypeptide — PACAP

Part of the book series: Current Topics in Neurotoxicity ((Current Topics Neurotoxicity,volume 11))

  • 545 Accesses

Abstract

Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide with well-known neurotrophic, neuroprotective, antioxidant, and antiapoptotic effects. It also exerts protective effects in sensory organs, such as visual and olfactory system. In this review we present data regarding the localization and effects of PACAP in the auditory system. PACAP and its specific receptor (PAC1-R) are present in the organ of Corti in hair cells, supporting cells, and different nerve fibers. They are also present in the spiral ganglion showing co-localization with efferent fibers of glutamatergic and adrenergic pathways, probably directly affecting the efferent signal transduction in the inner ear. PACAP and its specific receptor also occur in the stria vascularis suggesting a role in endolymph production; furthermore, they are present in central pathways of the auditory system such as the cochlear nuclei, superior olivary complex, inferior colliculus, and medial geniculate body. PAC1-receptor is also present in the inner ear in PACAP-deficient mice, occurring at the same localization but with altered expression compared to wild-type mice. PACAP protects hair cells from H2O2-induced apoptosis in chicken inner ear cell cultures in vitro, and the lack of PACAP affects the Ca2+-binding protein expression in hair cells in PACAP-deficient mice under control circumstances and after ototoxic drug treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AC:

Adenylate cyclase

ApoD:

Apolipoprotein D

ApoJ:

Apolipoprotein J

Bad:

bcl-2-associated death promoter

Bax:

bcl-2-like protein 4

Bcl:

B-cell lymphoma

ChAT:

Choline acetyltransferase

CREB:

cAMP response element-binding protein

DBH:

Dopamine β-hydroxylase

HZ:

Heterozygous PACAP-deficient mice

ERK:

Extracellular-signal-regulated kinase

GluR2/3:

Glutamate receptor 2/3

JC-1:

5,5′,6,6′-Tetrachloro-1,1′,3,3′-tetraethylbenzimi-dazolylcarbocyanine iodide

JNK:

c-Jun N-terminal kinase

LW:

Lateral wall

MNTB:

Medial nucleus of trapezoid body

MTT assay:

Colorimetric assay for assessing cell metabolic activity

nNOS:

Neuronal nitric oxide synthase

OC:

Organ of Corti

p38MAPK:

p38 mitogen-activated protein kinases

P5:

5th postnatal day

P7:

7th postnatal day

PACAP:

Pituitary adenylate cyclase-activating polypeptide

PACAP KO:

Homozygous PACAP-deficient mice

PACAP38:

1-38 Amino-acid isoform of PACAP

PAC1-R:

PAC1-receptor

PKA:

Protein kinase A

PLC:

Phospholipase C

ROS:

Reactive oxygen species

RT-PCR:

Reverse transcription-polymerase chain reaction

SG:

Spiral ganglion

SOC:

Superior olivary complex

VIP:

Vasoactive intestinal polypeptide

WT:

Wild type mice

References

  1. Abu-Hamdan MD, Drescher MJ, Ramakrishnan NA, Khan KM, Toma VS, Hatfield JS, et al. Pituitary adenylyl cyclase-activating polypeptide (PACAP) and its receptor (PAC1- R) in the cochlea: evidence for specific transcript expression of PAC1-R splice variants in rat microdissected cochlear subfractions. Neuroscience. 2006;140:147–61.

    Article  CAS  PubMed  Google Scholar 

  2. Drescher MJ, Drescher DG, Khan KM, Hatfield JS, Ramakrishnan NA, Abu-Hamdan MD, et al. Pituitary adenylyl cyclase-activating polypeptide (PACAP) and its receptor (PAC1- R) are positioned to modulate afferent signaling in the cochlea. Neuroscience. 2006;142:139–64.

    Article  CAS  PubMed  Google Scholar 

  3. Kawano H, Shimozono M, Tono T, Miyata A, Komune S. Expression of pituitary adenylate cyclase-activating polypeptide mRNA in the cochlea of rats. Mol Brain Res. 2001;94:200–3.

    Article  CAS  PubMed  Google Scholar 

  4. Hannibal J. Pituitary adenylate cyclase-activating peptide in the rat central nervous system: an immunohistochemical and in situ hybridization study. J Comp Neurol. 2002;453:389–417.

    Article  CAS  PubMed  Google Scholar 

  5. Kausz M, Murai Z, Arimura A, Koves K. Distribution of pituitary adenylate cyclase activating polypeptide (PACAP) immunoreactive elements in the brain stem of rats studied by immunohistochemistry. Neurobiology. 1999;7:19–31.

    CAS  PubMed  Google Scholar 

  6. Reuss S, Disque-Kaiser U, Antoniou-Lipfert P, Gholi MN, Riemann E, Riemann R. Neurochemistry of olivocochlear neurons in the hamster. Anat Rec (Hoboken). 2009;292:461–71.

    Article  Google Scholar 

  7. Tamas A, Szabadfi K, Nemeth A, Fulop B, Kiss P, Atlasz T, et al. Comparative examination of inner ear in wild type and pituitary adenylate cyclase activating polypeptide (PACAP)-deficient mice. Neurotox Res. 2012;21:435–44.

    Google Scholar 

  8. Gaal V, Mark L, Kiss P, Kustos I, Tamas A, Kocsis B, et al. Investigation of the effects of PACAP on the composition of tear and endolymph proteins. J Mol Neurosci. 2008;36:321–9.

    Article  CAS  PubMed  Google Scholar 

  9. Racz B, Horvath G, Reglodi D, Gasz B, Kiss P, Gallyas Jr F, et al. PACAP ameliorates oxidative stress in the chicken inner ear: an in vitro study. Regul Pept. 2010;160:91–8.

    Article  CAS  PubMed  Google Scholar 

  10. Nemeth A, Szabadfi K, Fulop B, Reglodi D, Kiss P, Farkas J, et al. Examination of calcium-binding protein expression in the inner ear of wild-type, heterozygous and homozygous pituitary adenylate cyclase-activating polypeptide (PACAP)-knockout mice in kanamycin-induced ototoxicity. Neurotox Res. 2014;25:57–67.

    Article  CAS  PubMed  Google Scholar 

  11. Spengler D, Waeber C, Pantaloni C, Holsboer F, Boekaert J, Seeburg PH, et al. Differential signal transduction by five splice variants of the PACAP receptor. Nature. 1993;365:170–5.

    Article  CAS  PubMed  Google Scholar 

  12. Chatterjee TK, Sharma RV, Fisher RA. Molecular cloning of a novel variant of the pituitary adenylate cyclase-activating polypeptide (PACAP) receptor that stimulates calcium influx by activation of L-type calcium channels. J Biol Chem. 1996;271:32226–32.

    Article  CAS  PubMed  Google Scholar 

  13. Dautzenberg FM, Mevenkamp G, Wille S, Hauger RL. N-terminal splice variants of the type I PACAP receptor: isolation, characterization and ligand binding/selectivity determinants. J Neuroendocrinol. 1999;11:941–9.

    Article  CAS  PubMed  Google Scholar 

  14. Shintani N, Suetake S, Hashimoto H, Koga K, Kasai A, Kawaguchi C, et al. Neuroprotective action of endogenous PACAP in cultured rat cortical neurons. Regul Pept. 2005;126:123–8.

    Article  CAS  PubMed  Google Scholar 

  15. Drescher MJ, Khan KM, Hatfield JS, Shakir AH, Drescher DG. Immunohistochemical localization of adenylyl cyclase isoforms in the lateral wall of the rat cochlea. Mol Brain Res. 2000;76:289–98.

    Article  CAS  PubMed  Google Scholar 

  16. Florian P, Amasheh S, Lessidrensky M, Todt I, Bloedow A, Ernst A, et al. Claudins in the tight junctions of stria vascularis marginal cells. Biochem Biophys Res Commun. 2003;304:5–10.

    Article  CAS  PubMed  Google Scholar 

  17. Kitajiri S, Furuse M, Morita K, Saishin-Kiuchi Y, Kido H, Ito J, et al. Expression patterns of claudins tight junction adhesion molecules in the inner ear. Hear Res. 2004;187:25–34.

    Article  CAS  PubMed  Google Scholar 

  18. Eybalin M. Neurotransmitters and neuromodulators of the mammalian cochlea. Physiol Rev. 1993;73:309–73.

    CAS  PubMed  Google Scholar 

  19. Morley BJ, Li H-S, Hiel H, Drescher DG, Elgoyhen AB. Identification of the subunits of the nicotinic cholinergic receptors in the rat cochlea using RT-PCR and in situ hybridization. Mol Brain Res. 1998;53:78–87.

    Article  CAS  PubMed  Google Scholar 

  20. D’Aldin C, Puel JL, Leducq R, Crambes O, Eybalin M, Pujol R. Effects of a dopaminergic agonist in the guinea pig cochlea. Hear Res. 1995;90:202–11.

    Article  PubMed  Google Scholar 

  21. Pujol R, Puel JL. Excitotoxicity, synaptic repair, and functional recovery in the mammalian cochlea: a review of recent findings. Ann N Y Acad Sci. 1999;884:249–54.

    Article  CAS  PubMed  Google Scholar 

  22. Anderson ST, Kusters DHL, Clarke IJ, Pow DV, Curlewis JD. Expression of pituitary adenylate cyclase activating polypeptide type 1 receptor (PAC1R) in the ewe hypothalamus: distribution and colocalization with tyrosine hydroxylase-immunoreactive neurones. J Neuroendocrinol. 2005;17:298–305.

    Article  CAS  PubMed  Google Scholar 

  23. Spoendlin H. Primary neurons and synapses. In: Friedmann I, Ballantyne J, editors. Ultrastructural atlas of the inner ear. London: Butterworths; 1984. p. 133–64.

    Google Scholar 

  24. Shioda S, Yada T, Muroya S, Uramura S, Nakajo S, Ohtaki H, et al. Functional significance of colocalization of PACAP and catecholamine in nerve terminals. Ann N Y Acad Sci. 2000;921:211–7.

    Article  CAS  PubMed  Google Scholar 

  25. May V, Beaudet MM, Parsons RL, Hardwick JC, Gauthier EA, Durda JP, et al. Mechanisms of pituitary adenylate cyclase activating polypeptide (PACAP)-induced depolarization of sympathetic superior cervical ganglion (SCG) neurons. Ann N Y Acad Sci. 1998;865:164–75.

    Article  CAS  PubMed  Google Scholar 

  26. Matsubara A, Laake JH, Davanger S, Usami S, Ottersen OP. Organization of AMPA receptor subunits at a glutamate synapse: a quantitative immunogold analysis of hair cell synapses in the rat organ of Corti. J Neurosci. 1996;16:4457–67.

    CAS  PubMed  Google Scholar 

  27. Puel JL. Chemical synaptic transmission in the cochlea. Prog Neurobiol. 1995;47:449–76.

    Article  CAS  PubMed  Google Scholar 

  28. Pujol R, Puel JL, Gervais d’Aldin C, Eybalin M. Pathophysiology of the glutamatergic synapses in the cochlea. Acta Otolaryngol Stockh. 1993;113:330–4.

    Article  CAS  PubMed  Google Scholar 

  29. Morio H, Tatsuno I, Hirai A, Tamura Y, Saito Y. Pituitary adenylate cyclase-activating polypeptide protects rat-cultured cortical neurons from glutamate-induced cytotoxicity. Brain Res. 1996;741:82–8.

    Article  CAS  PubMed  Google Scholar 

  30. Reglodi D, Kiss P, Szabadfi K, Atlasz T, Gabriel R, Horvath G, et al. PACAP is an endogenous protective factor-insights from PACAP-deficient mice. J Mol Neurosci. 2012;48:482–92.

    Article  CAS  PubMed  Google Scholar 

  31. Endo K, Nakamachi T, Seki T, Kagami N, Wada Y, Nakamura K, et al. Neuroprotective effect of PACAP against NMDA-induced retinal damage in the mouse. J Mol Neurosci. 2011;43:22–9.

    Article  CAS  PubMed  Google Scholar 

  32. May V, Vizzard MA. Bladder dysfunction and altered somatic sensitivity inPACAP-/- mice. J Urol. 2010;183:772–9.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Nakamachi T, Ohtaki H, Yofu S, Watanabe J, Mori H, Sato A, et al. Endogenous pituitary adenylate cyclase activating polypeptide is involved in suppression of edema in the ischemic brain. Acta Neurochir Suppl. 2010;106:43–6.

    Article  PubMed  Google Scholar 

  34. Ohtaki H, Nakamachi T, Dohi K, Aizawa Y, Takaki A, Hodoyama K, et al. Pituitary adenylate cyclase-activating polypeptide (PACAP) decreases ischemic neuronal cell death in association with IL-6. Proc Natl Acad Sci U S A. 2006;103:7488–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tsuchikawa D, Nakamachi T, Tsuchida M, Wada Y, Hori M, Farkas J, et al. Neuroprotective effect of endogenous pituitary adenylate cyclase-activating polypeptide on spinal cord injury. J Mol Neurosci. 2012;48:508–17.

    Article  CAS  PubMed  Google Scholar 

  36. Palkovits M, Somogyvari-Vigh A, Arimura A. Concentrations of pituitary adenylate cyclase activating polypeptide (PACAP) in human brain nuclei. Brain Res. 1995;699:116–20.

    Article  CAS  PubMed  Google Scholar 

  37. Schwartz IR. The superior olivary complex and lateral lemniscal nuclei. In: Webster DB, Popper AN, Fay RF, editors. The mammalian auditory pathway: neuroanatomy. New York: Springer; 1992. p. 117–67.

    Chapter  Google Scholar 

  38. Fukushima K, Takeda T, Kakigi A, Takeda S, Sawada S, Nishioka R, et al. Effects of lithium on endolymph homeostasis and experimentally induced endolymphatic hydrops. ORL J Otorhinolaryngol Relat Spec. 2005;67:282–8.

    Article  CAS  PubMed  Google Scholar 

  39. Hanner P, Jennische E, Lange S, Lonnroth I, Wahlstrom B. Increased antisecretory factor reduces vertigo in patients with Meniere’s disease: a pilot study. Hear Res. 2004;190:31–6.

    Article  CAS  PubMed  Google Scholar 

  40. Ferrary E, Sterkers O. Mechanisms of endolymph secretion. Kidney Int Suppl. 1998;65:S98–103.

    CAS  PubMed  Google Scholar 

  41. Kitano H, Suzuki M, Kitanishi T, Yazawa Y, Kitajima K, Isono T, et al. Regulation of inner ear fluid in the rat by vasopressin. Neuroreport. 1999;10:1205–7.

    Article  CAS  PubMed  Google Scholar 

  42. Misrahy GA, Hildreth KM, Shinabarger EW, Gannon WJ. Electrical properties of wall of endolymphatic space of the cochlea (guinea pig). Am J Physiol. 1958;194:396–402.

    CAS  PubMed  Google Scholar 

  43. Sterkers O, Ferrary E, Amiel C. Inter- and intracompartmental osmotic gradients within the rat cochlea. Am J Physiol. 1984;247:F602–6.

    CAS  PubMed  Google Scholar 

  44. Huang T, Cheng AG, Stupak H, Liu W, Kim A, Staecker H, et al. Oxidative stress-induced apoptosis of cochlear sensory cells: otoprotective strategies. Int J Dev Neurosci. 2000;18:259–70.

    Article  CAS  PubMed  Google Scholar 

  45. Yehoash R. Cochlear pathology, sensory cell death and regeneration. Br Med Bull. 2002;63:25–38.

    Article  Google Scholar 

  46. Ohtaki H, Nakamachi T, Dohi K, Shioda S. Role of PACAP in ischemic neural death. J Mol Neurosci. 2008;36:16–25.

    Article  CAS  PubMed  Google Scholar 

  47. Reglodi D, Fabian ZS, Tamas A, Lubics A, Szeberenyi J, Alexy T, et al. Effects of PACAP on in vitro and in vivo neuronal cell death, platelet aggregation, and production of reactive oxygen radicals. Regul Pept. 2004;123:51–9.

    Article  CAS  PubMed  Google Scholar 

  48. Reglodi D, Kiss P, Lubics A, Tamas A. Review on the protective effects of PACAP in models of neurodegenerative diseases in vitro and in vivo. Curr Pharm Des. 2011;17:962–72.

    Article  CAS  PubMed  Google Scholar 

  49. Kopke RD, Liu W, Gabaiyadeh R, Jacono A, Feghali J, Spray D, et al. Use of organotypic cultures of Corti’s organ to study the protective effects of antioxidant molecules on cisplatininduced damage of auditory hair cells. Am J Otol. 1997;18:559–71.

    CAS  PubMed  Google Scholar 

  50. Seidman MD, Vivek P. Intratympanic treatment of hearing loss with novel and traditional agents. Otolaryngol Clin North Am. 2004;37:973–90.

    Article  PubMed  Google Scholar 

  51. Cheng AG, Cunningham LL, Rubel EW. Hair cell death in the avian basilar papilla: characterization of the in vitro model and caspase activation. J Assoc Res Otolaryngol. 2003;4:91–105.

    Article  PubMed  Google Scholar 

  52. Hirose K, Westrum LE, Stone JS, Zirpel L, Rubel EW. Dynamic studies of ototoxicity in mature avian auditory epithelium. Ann N Y Acad Sci. 1999;884:389–409.

    Article  CAS  PubMed  Google Scholar 

  53. Matsui JI, Gale JE, Warchol ME. Critical signaling events during the aminoglycoside-induced death of sensory hair cells in vitro. J Neurobiol. 2004;61:250–66.

    Google Scholar 

  54. Dehne N, Lautermann J, ten Cate WJ, Rauen U, de Grott H. In vitro effects of hydrogen peroxide on the cochlear neurosensory epithelium of guinea pig. Hear Res. 2000;143:162–70.

    Article  CAS  PubMed  Google Scholar 

  55. Dejda A, Jolivel V, Bourgault S, Seaborn T, Fournier A, Vaudry H, et al. Inhibitory effect of PACAP on caspase activity in neuronal apoptosis: a better understanding towards therapeutic applications in neurodegenerative diseases. J Mol Neurosci. 2008;36:26–37.

    Article  CAS  PubMed  Google Scholar 

  56. Pantaloni C, Brabet P, Bilanges B, Dumuis A, Houssami S, Spengler D, et al. Alternative splicing in the N-terminal extracellular domain of the pituitary adenylate cyclaseactivating polypeptide (PACAP) receptor modulates receptor selectivity and relative potencies of PACAP-27 and PACAP-38 in phospholipase C activation. J Biol Chem. 1996;271:22146–51.

    Google Scholar 

  57. Ikeda R, Nakaya K, Oshima T, Kawase T, Kobayashi T. Calcium concentration in cochlear endolymph after vestibular labyrinth injury. Neuroreport. 2010;21:651–5.

    Article  CAS  PubMed  Google Scholar 

  58. Ikeda K, Kusakari J, Takasaka T. Ionic changes in cochlear endolymph of the guinea pig induced by acoustic injury. Hear Res. 1988;32:103–10.

    Article  CAS  PubMed  Google Scholar 

  59. Lendvai B, Halmos GB, Polony G, Kapocsi J, Horvath T, Aller M, et al. Chemical neuroprotection in the cochlea: the modulation of dopamine release from lateral olivocochlear efferents. Neurochem Int. 2011;59:150–8.

    Article  CAS  PubMed  Google Scholar 

  60. Li Y, Ding D, Jiang H, Fu Y, Salvi R. Co-administration of cisplatin and furosemide causes rapid and massive loss of cochlear hair cells in mice. Neurotox Res. 2011;20:307–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Salt AN, DeMott J. Endolymph calcium increases with time after surgical induction of hydrops in guinea-pigs. Hear Res. 1994;74:115–21.

    Article  CAS  PubMed  Google Scholar 

  62. Orrenius S, McCabe Jr MJ, Nicotera P. Ca(2+)-dependent mechanisms of cytotoxicity and programmed cell death. Toxicol Lett. 1992;64–65:357–64.

    Article  PubMed  Google Scholar 

  63. Trump BF, Berezesky IK. The role of altered [Ca2+]i regulation in apoptosis, oncosis, and necrosis. Biochim Biophys Acta. 1996;1313:173–8.

    Article  PubMed  Google Scholar 

  64. Gilbert RJ, Pothoulakis C, LaMont JT, Yakubovich M. Clostridium difficile toxin B activates calcium influx required for actin disassembly during cytotoxicity. Am J Physiol. 1995;268:G487–95.

    CAS  PubMed  Google Scholar 

  65. Hackney CM, Mahendrasingam S, Penn A, Fettiplace R. The concentrations of calcium buffering proteins in mammalian cochlear hair cells. J Neurosci. 2005;25:7867–75.

    Article  CAS  PubMed  Google Scholar 

  66. Heizmann CW. Calcium-binding proteins: basic concepts and clinical implications. Gen Physiol Biophys. 1992;11:411–25.

    CAS  PubMed  Google Scholar 

  67. Iacopino A, Christakos S, German D, Sonsalla PK, Altar CA. Calbindin-D28K-containing neurons in animal models of neurodegeneration:possible protection from excitotoxicity. Brain Res Mol Brain Res. 1992;13:251–61.

    Article  CAS  PubMed  Google Scholar 

  68. Idrizbegovic E, Salman H, Niu X, Canlon B. Presbyacusis and calcium-binding protein immunoreactivity in the cochlear nucleus of BALB/c mice. Hear Res. 2006;216–17:198–206.

    Article  Google Scholar 

  69. Rybak LP, Whitworth CA. Ototoxicity: therapeutic opportunities. Drug Discov Today. 2005;10:1313–21.

    Article  CAS  PubMed  Google Scholar 

  70. Poirrier AL, Van den Ackerveken P, Kim TS, Vandenbosch R, Nguyen L, Lefebvre PP, et al. Ototoxic drugs: difference in sensitivity between mice and guinea pigs. Toxicol Lett. 2010;193:41–9.

    Article  CAS  PubMed  Google Scholar 

  71. Huth ME, Ricci AJ, Cheng AG. Mechanisms of aminoglycoside ototoxicity and targets of hair cell protection. Int J Otolaryngol. 2011;937861.

    Google Scholar 

  72. Tombal B, Denmeade SR, Gillis JM, Isaacs JT. A supramicromolar elevation of intracellular free calcium ([Ca(2+)](i)) is consistently required to induce the execution phase of apoptosis. Cell Death Differ. 2002;9:561–73.

    Article  CAS  PubMed  Google Scholar 

  73. Vaudry D, Falluel-Morel A, Bourgault A, Basille M, Burel D, Wurtz O, et al. Pituitary adenylate cyclase activating polypeptide and its receptors: 20 years after the discovery. Pharm Rev. 2009;61:283–357.

    Article  CAS  PubMed  Google Scholar 

  74. Dong Y, Tang TS, Lu CL, He C, Dong JB, Huang XY, et al. Pituitary adenylate cyclase activating polypeptide ameliorates the damage and inhibits the increase of intracellular calcium concentration in cultured hippocampal neurons induced by glutamate. Sheng Li Xue Bao. 2000;52:402–6.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

MTA-PTE “Lendulet” Program, OTKA K104984, 119759, Arimura Foundation, TAMOP 4.2.4.A/2-11-1-2012-0001 “National Excellence Program,” New National Excellence Program (UNKP), Janos Bolyai Research Scholarship of Hungarian Academy of Sciences. This work is dedicated to the 650th anniversary of the University of Pecs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Tamas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fulop, B.D., Reglodi, D., Nemeth, A., Tamas, A. (2016). Pituitary Adenylate Cyclase-Activating Polypeptide in the Auditory System. In: Reglodi, D., Tamas, A. (eds) Pituitary Adenylate Cyclase Activating Polypeptide — PACAP. Current Topics in Neurotoxicity, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-35135-3_31

Download citation

Publish with us

Policies and ethics