Skip to main content

Role of PACAP and Its PACAP Type I Receptor in the Central Control of Reproductive Hormones

  • Chapter
  • First Online:
Pituitary Adenylate Cyclase Activating Polypeptide — PACAP

Part of the book series: Current Topics in Neurotoxicity ((Current Topics Neurotoxicity,volume 11))

  • 557 Accesses

Abstract

The regulation of sexual maturation and reproductive function requires precise cooperation of hormonal regulation at hypothalamic, pituitary, and gonadal levels. Gonadotropin-releasing hormone (GnRH), which is released from the hypothalamus in a pulsatile manner, regulates synthesis and secretion of the pituitary gonadotropins: luteinizing hormone (LH) and follicle-stimulating hormone (FSH). Gonadotropins, in turn, are secreted into the systemic circulation and act on the gonads to regulate follicular development, steroidogenesis, and gametogenesis. GnRH and gonadotropins are key players in controlling female reproductive functions. In addition, it has gradually become clear that kisspeptin neurons in the hypothalamus activate GnRH neurons through G protein-coupled receptor 54 (GPR54), and many investigations thus far have advanced our understanding of the physiological control of the hypothalamic–pituitary–gonadal axis.

Pituitary adenylate cyclase-activating polypeptide (PACAP) type I receptor (PAC1R) is a G protein-coupled receptor that is activated by PACAP. PACAP is present in two bioactive amidated forms, PACAP38 and PACAP28, and was first isolated as a hypothalamic activator of cAMP production in pituitary cells. PAC1R and PACAP are expressed not only in the central nervous system, but also in peripheral organs, and function in the hypothalamus and anterior pituitary alone or in cooperation with other hypothalamic neuropeptides.

In this review, we summarize the current state of knowledge on how PACAP and PAC1R affect the central control of reproductive functions. The effect of PACAP and its PAC1R on pituitary lactotrophs, gonadotrophs, and GnRH producing neurons is mainly described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Miyata A, Arimura A, Dahl RR, Minamino N, Uehara A, Jiang L, et al. Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem Biophys Res Commun. 1989;164(1):567–74.

    Article  CAS  PubMed  Google Scholar 

  2. Miyata A, Jiang L, Dahl RD, Kitada C, Kubo K, Fujino M, et al. Isolation of a neuropeptide corresponding to the N-terminal 27 residues of the pituitary adenylate cyclase activating polypeptide with 38 residues (PACAP38). Biochem Biophys Res Commun. 1990;170(2):643–8.

    Article  CAS  PubMed  Google Scholar 

  3. Segre GV, Goldring SR. Receptors for secretin, calcitonin, parathyroid hormone (PTH)/PTH-related peptide, vasoactive intestinal peptide, glucagonlike peptide 1, growth hormone-releasing hormone, and glucagon belong to a newly discovered G-protein-linked receptor family. Trends Endocrinol Metab. 1993;4(10):309–14.

    Article  CAS  PubMed  Google Scholar 

  4. Arimura A, Somogyvari-Vigh A, Miyata A, Mizuno K, Coy DH, Kitada C. Tissue distribution of PACAP as determined by RIA: highly abundant in the rat brain and testes. Endocrinology. 1991;129(5):2787–9.

    Article  CAS  PubMed  Google Scholar 

  5. Gonzalez BJ, Basille M, Vaudry D, Fournier A, Vaudry H. Pituitary adenylate cyclase-activating polypeptide. Ann Endocrinol. 1998;59(5):364–405. Pituitary adenylate cyclase-activating polypeptide.

    CAS  Google Scholar 

  6. Ghatei MA, Takahashi K, Suzuki Y, Gardiner J, Jones PM, Bloom SR. Distribution, molecular characterization of pituitary adenylate cyclase-activating polypeptide and its precursor encoding messenger RNA in human and rat tissues. J Endocrinol. 1993;136(1):159–66.

    Article  CAS  PubMed  Google Scholar 

  7. Hannibal J. Pituitary adenylate cyclase-activating peptide in the rat central nervous system: an immunohistochemical and in situ hybridization study. J Comp Neurol. 2002;453(4):389–417.

    Article  CAS  PubMed  Google Scholar 

  8. Koves K, Arimura A, Somogyvari-Vigh A, Vigh S, Miller J. Immunohistochemical demonstration of a novel hypothalamic peptide, pituitary adenylate cyclase-activating polypeptide, in the ovine hypothalamus. Endocrinology. 1990;127(1):264–71.

    Article  CAS  PubMed  Google Scholar 

  9. Koves K, Arimura A, Gorcs TG, Somogyvari-Vigh A. Comparative distribution of immunoreactive pituitary adenylate cyclase activating polypeptide and vasoactive intestinal polypeptide in rat forebrain. Neuroendocrinology. 1991;54(2):159–69.

    Article  CAS  PubMed  Google Scholar 

  10. Dow RC, Bennie J, Fink G. Pituitary adenylate cyclase-activating peptide-38 (PACAP)-38 is released into hypophysial portal blood in the normal male and female rat. J Endocrinol. 1994;142(1):R1–4.

    Article  CAS  PubMed  Google Scholar 

  11. Hannibal J, Mikkelsen JD, Clausen H, Holst JJ, Wulff BS, Fahrenkrug J. Gene expression of pituitary adenylate cyclase activating polypeptide (PACAP) in the rat hypothalamus. Regul Pept. 1995;55(2):133–48.

    Article  CAS  PubMed  Google Scholar 

  12. Kimura S, Ohshige Y, Lin L, Okumura T, Yanaihara C, Yanaihara N, et al. Localization of pituitary adenylate cyclase-activating polypeptide (PACAP) in the hypothalamus-pituitary system in rats: light and electron microscopic immunocytochemical studies. J Neuroendocrinol. 1994;6(5):503–7.

    Article  CAS  PubMed  Google Scholar 

  13. Li M, Maderdrut JL, Lertora JJ, Batuman V. Intravenous infusion of pituitary adenylate cyclase-activating polypeptide (PACAP) in a patient with multiple myeloma and myeloma kidney: a case study. Peptides. 2007;28(9):1891–5.

    Article  CAS  PubMed  Google Scholar 

  14. Mulder H, Uddman R, Moller K, Zhang YZ, Ekblad E, Alumets J, et al. Pituitary adenylate cyclase activating polypeptide expression in sensory neurons. Neuroscience. 1994;63(1):307–12.

    Article  CAS  PubMed  Google Scholar 

  15. Seki T, Shioda S, Izumi S, Arimura A, Koide R. Electron microscopic observation of pituitary adenylate cyclase-activating polypeptide (PACAP)-containing neurons in the rat retina. Peptides. 2000;21(1):109–13.

    Article  CAS  PubMed  Google Scholar 

  16. Vigh S, Arimura A, Gottschall PE, Kitada C, Somogyvari-Vigh A, Childs GV. Cytochemical characterization of anterior pituitary target cells for the neuropeptide, pituitary adenylate cyclase activating polypeptide (PACAP), using biotinylated ligands. Peptides. 1993;14(1):59–65.

    Article  CAS  PubMed  Google Scholar 

  17. Koves K, Kantor O, Scammell JG, Arimura A. PACAP colocalizes with luteinizing and follicle-stimulating hormone immunoreactivities in the anterior lobe of the pituitary gland. Peptides. 1998;19(6):1069–72.

    Article  CAS  PubMed  Google Scholar 

  18. Frodin M, Hannibal J, Wulff BS, Gammeltoft S, Fahrenkrug J. Neuronal localization of pituitary adenylate cyclase-activating polypeptide 38 in the adrenal medulla and growth-inhibitory effect on chromaffin cells. Neuroscience. 1995;65(2):599–608.

    Article  CAS  PubMed  Google Scholar 

  19. Filipsson K, Sundler F, Hannibal J, Ahren B. PACAP and PACAP receptors in insulin producing tissues: localization and effects. Regul Pept. 1998;74(2–3):167–75.

    Article  CAS  PubMed  Google Scholar 

  20. Skakkebaek M, Hannibal J, Fahrenkrug J. Pituitary adenylate cyclase activating polypeptide (PACAP) in the rat mammary gland. Cell Tissue Res. 1999;298(1):153–9.

    Article  CAS  PubMed  Google Scholar 

  21. Hannibal J, Ekblad E, Mulder H, Sundler F, Fahrenkrug J. Pituitary adenylate cyclase activating polypeptide (PACAP) in the gastrointestinal tract of the rat: distribution and effects of capsaicin or denervation. Cell Tissue Res. 1998;291(1):65–79.

    Article  CAS  PubMed  Google Scholar 

  22. Gaytan F, Martinez-Fuentes AJ, Garcia-Navarro F, Vaudry H, Aguilar E. Pituitary adenylate cyclase-activating peptide (PACAP) immunolocalization in lymphoid tissues of the rat. Cell Tissue Res. 1994;276(2):223–7.

    Article  CAS  PubMed  Google Scholar 

  23. Fahrenkrug J, Hannibal J. Pituitary adenylate cyclase activating polypeptide innervation of the rat female reproductive tract and the associated paracervical ganglia: effect of capsaicin. Neuroscience. 1996;73(4):1049–60.

    Article  CAS  PubMed  Google Scholar 

  24. Shioda S, Legradi G, Leung WC, Nakajo S, Nakaya K, Arimura A. Localization of pituitary adenylate cyclase-activating polypeptide and its messenger ribonucleic acid in the rat testis by light and electron microscopic immunocytochemistry and in situ hybridization. Endocrinology. 1994;135(3):818–25.

    CAS  PubMed  Google Scholar 

  25. Koh PO, Kwak SD, Kim HJ, Roh G, Kim JH, Kang SS, et al. Expression patterns of pituitary adenylate cyclase activating polypeptide and its type I receptor mRNAs in the rat placenta. Mol Reprod Dev. 2003;64(1):27–31.

    Article  CAS  PubMed  Google Scholar 

  26. Spencer F, Chi L, Zhu M. Temporal relationships among uterine pituitary adenylate cyclase-activating polypeptide, decidual prolactin-related protein and progesterone receptor mRNAs expressions during decidualization and gestation in rats. Comp Biochem Physiol C Toxicol Pharmacol. 2001;129(1):25–34.

    Article  CAS  PubMed  Google Scholar 

  27. Uddman R, Luts A, Absood A, Arimura A, Ekelund M, Desai H, et al. PACAP, a VIP-like peptide, in neurons of the esophagus. Regul Pept. 1991;36(3):415–22.

    Article  CAS  PubMed  Google Scholar 

  28. Luts L, Sundler F. Peptide-containing nerve fibers in the parathyroid glands of different species. Regul Pept. 1994;50(2):147–58.

    Article  CAS  PubMed  Google Scholar 

  29. Vaudry D, Falluel-Morel A, Bourgault S, Basille M, Burel D, Wurtz O, et al. Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery. Pharmacol Rev. 2009;61(3):283–357.

    Article  CAS  PubMed  Google Scholar 

  30. Mijiddorj T, Kanasaki H, Purwana IN, Oride A, Miyazaki K. Stimulatory effect of pituitary adenylate-cyclase activating polypeptide (PACAP) and its PACAP type I receptor (PAC1R) on prolactin synthesis in rat pituitary somatolactotroph GH3 cells. Mol Cell Endocrinol. 2011;339(1–2):172–9.

    Article  CAS  PubMed  Google Scholar 

  31. Harada T, Kanasaki H, Mutiara S, Oride A, Miyazaki K. Cyclic adenosine 3',5'monophosphate/protein kinase A and mitogen-activated protein kinase 3/1 pathways are involved in adenylate cyclase-activating polypeptide 1-induced common alpha-glycoprotein subunit gene (Cga) expression in mouse pituitary gonadotroph LbetaT2 cells. Biol Reprod. 2007;77(4):707–16.

    Article  CAS  PubMed  Google Scholar 

  32. Rawlings SR, Hezareh M. Pituitary adenylate cyclase-activating polypeptide (PACAP) and PACAP/vasoactive intestinal polypeptide receptors: actions on the anterior pituitary gland. Endocr Rev. 1996;17(1):4–29.

    CAS  PubMed  Google Scholar 

  33. Okada R, Yamamoto K, Ito Y, Mochida H, Tonon MC, Fournier A, et al. VIP and PACAP stimulate TSH release from the bullfrog pituitary. Peptides. 2007;28(9):1784–9.

    Article  CAS  PubMed  Google Scholar 

  34. Grafer CM, Thomas R, Lambrakos L, Montoya I, White S, Halvorson LM. GnRH stimulates expression of PACAP in the pituitary gonadotropes via both the PKA and PKC signaling systems. Mol Endocrinol. 2009;23(7):1022–32. Pubmed Central PMCID: 2703603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Radleff-Schlimme A, Leonhardt S, Wuttke W, Jarry H. Evidence for PACAP to be an autocrine factor on gonadotrope cells. Ann N Y Acad Sci. 1998;865:486–91.

    Article  CAS  PubMed  Google Scholar 

  36. Jin L, Tsumanuma I, Ruebel KH, Bayliss JM, Lloyd RV. Analysis of homogeneous populations of anterior pituitary folliculostellate cells by laser capture microdissection and reverse transcription-polymerase chain reaction. Endocrinology. 2001;142(5):1703–9.

    CAS  PubMed  Google Scholar 

  37. Ben-Jonathan N, Hnasko R. Dopamine as a prolactin (PRL) inhibitor. Endocr Rev. 2001;22(6):724–63.

    Article  CAS  PubMed  Google Scholar 

  38. Yamada M, Saga Y, Shibusawa N, Hirato J, Murakami M, Iwasaki T, et al. Tertiary hypothyroidism and hyperglycemia in mice with targeted disruption of the thyrotropin-releasing hormone gene. Proc Natl Acad Sci U S A. 1997;94(20):10862–7. Pubmed Central PMCID: 23510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Vijayan E, Samson WK, Said SI, McCann SM. Vasoactive intestinal peptide: evidence for a hypothalamic site of action to release growth hormone, luteinizing hormone, and prolactin in conscious ovariectomized rats. Endocrinology. 1979;104(1):53–7.

    Article  CAS  PubMed  Google Scholar 

  40. Muratori M, Romano C, Gambino G, Faglia G. Prolactin responsiveness to peptide histidine methionine-27 in normal subjects and hyperprolactinemic patients. Horm Res. 1994;42(6):257–61.

    Article  CAS  PubMed  Google Scholar 

  41. Yamauchi K, Murakami Y, Nishiki M, Tanaka J, Koshimura K, Kato Y. Possible involvement of vasoactive intestinal polypeptide in the central stimulating action of pituitary adenylate cyclase-activating polypeptide on prolactin secretion in the rat. Neurosci Lett. 1995;189(2):131–4.

    Article  CAS  PubMed  Google Scholar 

  42. Isaac ER, Sherwood NM. Pituitary adenylate cyclase-activating polypeptide (PACAP) is important for embryo implantation in mice. Mol Cell Endocrinol. 2008;280(1–2):13–9.

    Article  CAS  PubMed  Google Scholar 

  43. Hart GR, Gowing H, Burrin JM. Effects of a novel hypothalamic peptide, pituitary adenylate cyclase-activating polypeptide, on pituitary hormone release in rats. J Endocrinol. 1992;134(1):33–41.

    Article  CAS  PubMed  Google Scholar 

  44. Sawangjaroen K, Anderson ST, Curlewis JD. Effects of pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal polypeptide (VIP) on hormone secretion from sheep pituitary cells in vitro. J Neuroendocrinol. 1997;9(4):279–86.

    Article  CAS  PubMed  Google Scholar 

  45. Hashizume T, Soliman EB, Kanematsu S. Effects of pituitary adenylate cyclase-activating polypeptide (PACAP), prostaglandin E2 (PGE2) and growth hormone releasing factor (GRF) on the release of growth hormone from cultured bovine anterior pituitary cells in vitro. Domest Anim Endocrinol. 1994;11(4):331–7.

    Article  CAS  PubMed  Google Scholar 

  46. Vertongen P, Velkeniers B, Hooghe-Peters E, Robberecht P. Differential alternative splicing of PACAP receptor in pituitary cell subpopulations. Mol Cell Endocrinol. 1995;113(2):131–5.

    Article  CAS  PubMed  Google Scholar 

  47. Gershengorn MC. Mechanism of thyrotropin releasing hormone stimulation of pituitary hormone secretion. Annu Rev Physiol. 1986;48:515–26.

    Article  CAS  PubMed  Google Scholar 

  48. Ohmichi M, Sawada T, Kanda Y, Koike K, Hirota K, Miyake A, et al. Thyrotropin-releasing hormone stimulates MAP kinase activity in GH3 cells by divergent pathways. Evidence of a role for early tyrosine phosphorylation. J Biol Chem. 1994;269(5):3783–8.

    CAS  PubMed  Google Scholar 

  49. Wang YH, Maurer RA. A role for the mitogen-activated protein kinase in mediating the ability of thyrotropin-releasing hormone to stimulate the prolactin promoter. Mol Endocrinol. 1999;13(7):1094–104.

    Article  CAS  PubMed  Google Scholar 

  50. Kanasaki H, Fukunaga K, Takahashi K, Miyazaki K, Miyamoto E. Mitogen-activated protein kinase activation by stimulation with thyrotropin-releasing hormone in rat pituitary GH3 cells. Biol Reprod. 1999;61(1):319–25.

    Article  CAS  PubMed  Google Scholar 

  51. Kanasaki H, Yonehara T, Yamamoto H, Takeuchi Y, Fukunaga K, Takahashi K, et al. Differential regulation of pituitary hormone secretion and gene expression by thyrotropin-releasing hormone. A role for mitogen-activated protein kinase signaling cascade in rat pituitary GH3 cells. Biol Reprod. 2002;67(1):107–13.

    Article  CAS  PubMed  Google Scholar 

  52. Vargas MA, Bourdais J, Sanchez S, Uriostegui B, Moreno E, Joseph-Bravo P, et al. Multiple hypothalamic factors regulate pyroglutamyl peptidase II in cultures of adenohypophyseal cells: role of the cAMP pathway. J Neuroendocrinol. 1998;10(3):199–206.

    Article  CAS  PubMed  Google Scholar 

  53. Charli JL, Vargas MA, Cisneros M, de Gortari P, Baeza MA, Jasso P, et al. TRH inactivation in the extracellular compartment: role of pyroglutamyl peptidase II. Neurobiology (Bp). 1998;6(1):45–57.

    CAS  Google Scholar 

  54. Mijiddorj T, Kanasaki H, Unurjargal S, Oride A, Purwana I, Miyazaki K. Prolonged stimulation with thyrotropin-releasing hormone and pituitary adenylate cyclase-activating polypeptide desensitize their receptor functions in prolactin-producing GH3 cells. Mol Cell Endocrinol. 2013;365(2):139–45.

    Article  CAS  PubMed  Google Scholar 

  55. Knobil E. Patterns of hypophysiotropic signals and gonadotropin secretion in the rhesus monkey. Biol Reprod. 1981;24(1):44–9.

    Article  CAS  PubMed  Google Scholar 

  56. Hinkle PM, Tashjian Jr AH. Thyrotropin-releasing hormone regulates the number of its own receptors in the GH3 strain of pituitary cells in culture. Biochemistry. 1975;14(17):3845–51.

    Article  CAS  PubMed  Google Scholar 

  57. Tsujii T, Ishizaka K, Winters SJ. Effects of pituitary adenylate cyclase-activating polypeptide on gonadotropin secretion and subunit messenger ribonucleic acids in perifused rat pituitary cells. Endocrinology. 1994;135(3):826–33.

    CAS  PubMed  Google Scholar 

  58. Canny BJ, Rawlings SR, Leong DA. Pituitary adenylate cyclase-activating polypeptide specifically increases cytosolic calcium ion concentration in rat gonadotropes and somatotropes. Endocrinology. 1992;130(1):211–5.

    CAS  PubMed  Google Scholar 

  59. Koves K, Kantor O, Molnar J, Heinzlmann A, Szabo E, Szabo F, et al. The role of PACAP in gonadotropic hormone secretion at hypothalamic and pituitary levels. J Mol Neurosci. 2003;20(2):141–52.

    Article  PubMed  Google Scholar 

  60. Szabo E, Nemeskeri A, Arimura A, Koves K. Effect of PACAP on LH release studied by cell immunoblot assay depends on the gender, on the time of day and in female rats on the day of the estrous cycle. Regul Pept. 2004;123(1–3):139–45.

    Article  CAS  PubMed  Google Scholar 

  61. Mutiara S, Kanasaki H, Harada T, Miyazaki K. Dopamine D(2) receptor expression and regulation of gonadotropin alpha-subunit gene in clonal gonadotroph LbetaT2 cells. Mol Cell Endocrinol. 2006;259(1–2):22–9.

    Article  CAS  PubMed  Google Scholar 

  62. Burrin JM, Aylwin SJ, Holdstock JG, Sahye U. Mechanism of action of pituitary adenylate cyclase-activating polypeptide on human glycoprotein hormone alpha-subunit transcription in alphaT3-1 gonadotropes. Endocrinology. 1998;139(4):1731–7.

    CAS  PubMed  Google Scholar 

  63. Pincas H, Laverriere JN, Counis R. Pituitary adenylate cyclase-activating polypeptide and cyclic adenosine 3',5'-monophosphate stimulate the promoter activity of the rat gonadotropin-releasing hormone receptor gene via a bipartite response element in gonadotrope-derived cells. J Biol Chem. 2001;276(26):23562–71.

    Article  CAS  PubMed  Google Scholar 

  64. Oride A, Kanasaki H, Purwana IN, Miyazaki K. Possible involvement of mitogen-activated protein kinase phosphatase-1 (MKP-1) in thyrotropin-releasing hormone (TRH)-induced prolactin gene expression. Biochem Biophys Res Commun. 2009;382(4):663–7.

    Article  CAS  PubMed  Google Scholar 

  65. Kanasaki H, Purwana IN, Mijiddorj T, Oride A, Miyazaki K. Possible involvement of PACAP and PACAP type 1 receptor in GnRH-induced FSH beta-subunit gene expression. Regul Pept. 2011;167(2–3):227–32.

    Article  CAS  PubMed  Google Scholar 

  66. Kaiser UB, Conn PM, Chin WW. Studies of gonadotropin-releasing hormone (GnRH) action using GnRH receptor-expressing pituitary cell lines. Endocr Rev. 1997;18(1):46–70.

    CAS  PubMed  Google Scholar 

  67. Crowley Jr WF, Filicori M, Spratt DI, Santoro NF. The physiology of gonadotropin-releasing hormone (GnRH) secretion in men and women. Recent Prog Horm Res. 1985;41:473–531.

    CAS  PubMed  Google Scholar 

  68. Wildt L, Hausler A, Marshall G, Hutchison JS, Plant TM, Belchetz PE, et al. Frequency and amplitude of gonadotropin-releasing hormone stimulation and gonadotropin secretion in the rhesus monkey. Endocrinology. 1981;109(2):376–85.

    Article  CAS  PubMed  Google Scholar 

  69. Bedecarrats GY, Kaiser UB. Differential regulation of gonadotropin subunit gene promoter activity by pulsatile gonadotropin-releasing hormone (GnRH) in perifused L beta T2 cells: role of GnRH receptor concentration. Endocrinology. 2003;144(5):1802–11.

    Article  CAS  PubMed  Google Scholar 

  70. Kanasaki H, Bedecarrats GY, Kam KY, Xu S, Kaiser UB. Gonadotropin-releasing hormone pulse frequency-dependent activation of extracellular signal-regulated kinase pathways in perifused LbetaT2 cells. Endocrinology. 2005;146(12):5503–13.

    Article  CAS  PubMed  Google Scholar 

  71. Ahren B, Filipsson K. Pituitary adenylate cyclase activating polypeptide stimulates insulin secretion in a glucose-dependent manner in vivo. Ann N Y Acad Sci. 1998;865:466–70.

    Article  CAS  PubMed  Google Scholar 

  72. Kaiser UB, Sabbagh E, Katzenellenbogen RA, Conn PM, Chin WW. A mechanism for the differential regulation of gonadotropin subunit gene expression by gonadotropin-releasing hormone. Proc Natl Acad Sci U S A. 1995;92(26):12280–4. Pubmed Central PMCID: 40340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Purwana IN, Kanasaki H, Oride A, Mijiddorj T, Shintani N, Hashimoto H, et al. GnRH-induced PACAP and PAC1 receptor expression in pituitary gonadotrophs: a possible role in the regulation of gonadotropin subunit gene expression. Peptides. 2010;31(9):1748–55.

    Article  CAS  PubMed  Google Scholar 

  74. Purwana IN, Kanasaki H, Oride A, Mijiddorj T, Miyazaki K. Expression of the pituitary adenylate cyclase-activating polypeptide (PACAP) type 1 receptor (PAC1R) potentiates the effects of GnRH on gonadotropin subunit gene expression. Biochem Biophys Res Commun. 2011;410(2):295–300.

    Article  CAS  PubMed  Google Scholar 

  75. Anderson ST, Sawangjaroen K, Curlewis JD. Pituitary adenylate cyclase-activating polypeptide acts within the medial basal hypothalamus to inhibit prolactin and luteinizing hormone secretion. Endocrinology. 1996;137(8):3424–9.

    CAS  PubMed  Google Scholar 

  76. Li S, Grinevich V, Fournier A, Pelletier G. Effects of pituitary adenylate cyclase-activating polypeptide (PACAP) on gonadotropin-releasing hormone and somatostatin gene expression in the rat brain. Brain Res Mol Brain Res. 1996;41(1–2):157–62.

    Article  CAS  PubMed  Google Scholar 

  77. Szabo F, Horvath J, Heinzlmann A, Arimura A, Koves K. Neonatal PACAP administration in rats delays puberty through the influence of the LHRH neuronal system. Regul Pept. 2002;109(1–3):49–55.

    Article  CAS  PubMed  Google Scholar 

  78. Choi EJ, Ha CM, Kim MS, Kang JH, Park SK, Choi WS, et al. Central administration of an antisense oligodeoxynucleotide against type I pituitary adenylate cyclase-activating polypeptide receptor suppresses synthetic activities of LHRH-LH axis during the pubertal process. Brain Res Mol Brain Res. 2000;80(1):35–45.

    Article  CAS  PubMed  Google Scholar 

  79. Olcese J, McArdle CA, Middendorff R, Greenland K. Pituitary adenylate cyclase-activating peptide and vasoactive intestinal peptide receptor expression in immortalized LHRH neurons. J Neuroendocrinol. 1997;9(12):937–43.

    Article  CAS  PubMed  Google Scholar 

  80. Kanasaki H, Mijiddorj T, Sukhbaatar U, Oride A, Miyazaki K. Pituitary adenylate cyclase-activating polypeptide (PACAP) increases expression of the gonadotropin-releasing hormone (GnRH) receptor in GnRH-producing GT1-7 cells overexpressing PACAP type I receptor. Gen Comp Endocrinol. 2013;193:95–102.

    Article  CAS  PubMed  Google Scholar 

  81. Kauffman AS, Clifton DK, Steiner RA. Emerging ideas about kisspeptin- GPR54 signaling in the neuroendocrine regulation of reproduction. Trends Neurosci. 2007;30(10):504–11.

    Article  CAS  PubMed  Google Scholar 

  82. McArdle CA. Pituitary adenylate cyclase-activating polypeptide: a key player in reproduction? Endocrinology. 1994;135(3):815–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haruhiko Kanasaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kanasaki, H., Oride, A., Tselmeg, M., Sukhbaatar, U., Kyo, S. (2016). Role of PACAP and Its PACAP Type I Receptor in the Central Control of Reproductive Hormones. In: Reglodi, D., Tamas, A. (eds) Pituitary Adenylate Cyclase Activating Polypeptide — PACAP. Current Topics in Neurotoxicity, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-35135-3_22

Download citation

Publish with us

Policies and ethics