Skip to main content

PACAP Regulation of Gastrointestinal Function and Obesity

  • Chapter
  • First Online:
Book cover Pituitary Adenylate Cyclase Activating Polypeptide — PACAP

Part of the book series: Current Topics in Neurotoxicity ((Current Topics Neurotoxicity,volume 11))

Abstract

Pituitary adenylate cyclase activating polypeptide (PACAP) is a 27- or 38-amino acid peptide that is widely distributed in both the peripheral and central nervous systems. PACAP has been found to be expressed within the enteric nervous system and gastric mucosa and has profound physiological effects in the gastrointestinal tract. We have previously shown that PACAP regulates gastric acid secretion by activating its high affinity PAC1 receptors expressed on gastric enterochromaffin-like cells (ECL). However, the peripheral mechanisms involved in PACAP regulation of appetite and feeding are unknown. Vasoactive intestinal peptide (VIP) is a 28-amino acid peptide abundantly expressed in the central nervous system as well as in the gastrointestinal tract, where it regulates different physiological functions. VIP inhibits gastric acid secretion via its VPAC1 receptors expressed on gastric D cells. VIP also regulates intestinal motility and VIP gene deletion results in the development of intestinal ileus. VIP is involved in the control of appetite/satiety, feeding behavior and in the secretion of some key regulatory metabolic hormones. VIP plays a very important role in the regulation of body weight and mass composition by significantly enhancing body weight and fat mass. Therefore, both PACAP and VIP neuropeptides could be crucial targets for the regulation of appetite/satiety, body phenotype and for the treatment of obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang YC, McPherson K, Marsh T, Gortmaker SL, Brown M. Health and economic burden of the projected obesity trends in the USA and the UK. Lancet. 2011;378:815–25.

    Article  PubMed  Google Scholar 

  2. Azagury DE, Lautz DB. Obesity overview: epidemiology, health and financial impact, and guidelines for qualification for surgical therapy. Gastrointest Endosc Clin N Am. 2011;21:189–201.

    Article  PubMed  Google Scholar 

  3. Greenwood HC, Bloom SR, Murphy KG. Peptides and their potential role in the treatment of diabetes and obesity. Rev Diabet Stud. 2011;8:355–68.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Woods SC, Seeley RJ, Porte Jr D, Schwartz MW. Signals that regulate food intake and energy homeostasis. Science. 1998;280:1378–83.

    Article  CAS  PubMed  Google Scholar 

  5. Dockray G. Gut endocrine secretions and their relevance to satiety. Curr Opin Pharmacol. 2004;4:557–60.

    Article  CAS  PubMed  Google Scholar 

  6. Date Y, Kojima M, Hosoda H, Sawaguchi A, Mondal MS, Suganuma T, et al. Ghrelin, a novel growth hormone-releasing acylated peptide, is synthesized in a distinct endocrine cell type in the gastrointestinal tracts of rats and humans. Endocrinology. 2000;141:4255–61.

    CAS  PubMed  Google Scholar 

  7. Fukumoto K, Nakahara K, Katayama T, Miyazatao M, Kangawa K, Murakami N. Synergistic action of gastrin and ghrelin on gastric acid secretion in rats. Biochem Biophys Res Commun. 2008;374:60–3.

    Article  CAS  PubMed  Google Scholar 

  8. Wank SA, Pisegna JR, de Weerth A. Molecular cloning of the rat cholecystokinin type B receptor; structure, and functional expression. Proc Natl Acad Sci U S A. 1992;89:8691–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Huppi K, Siwarski D, Pisegna JR, Wank SA. Chromosomal localization of the gastric and brain receptors for cholecystokinin (CCKAR and CCKBR) in human and mouse. Genomics. 1995;25:727–9.

    Article  CAS  PubMed  Google Scholar 

  10. De Weerth A, Pisegna JR, Wank SA. Guinea pig gallbladder and pancreas possess identical CCK-A receptor subtypes: receptor cloning and expression. Am J Physiol. 1993;265:G1116–21.

    PubMed  Google Scholar 

  11. Pohl M, Poirot SS, Pisegna JR, Tarasova NI, Wank SA. The carboxy-terminus of the cholecystokinin B receptor (CCKBR), unlike that of the type A receptor (CCKAR), is essential for ligand-induced internalization. J Biol Chem. 1997;272:18179–84.

    Article  CAS  PubMed  Google Scholar 

  12. Adrian TE, Ferri GL, Bacarese-Hamilton AJ, Fuessl HS, Polak JM, Bloom SR. Human distribution and release of a putative new gut hormone, peptide YY. Gastroenterology. 1985;89:1070–7.

    Article  CAS  PubMed  Google Scholar 

  13. Batterham RL, Cowley MA, Small CJ, Herzog H, Cohen MA, Dakin CL, et al. Gut hormone PYY(3-36) physiologically inhibits food intake. Nature. 2002;418:650–4.

    Article  CAS  PubMed  Google Scholar 

  14. Batterham RL, Cohen MA, Ellis SM, Le Roux CW, Withers DJ, Frost GS, et al. Inhibition of food intake in obese subjects by peptide YY3-36. N Engl J Med. 2003;349:941–8.

    Article  CAS  PubMed  Google Scholar 

  15. Ekblad E, Sundler F. Distribution of pancreatic polypeptide and peptide YY. Peptides. 2002;23:251–61.

    Article  CAS  PubMed  Google Scholar 

  16. Schmidt PT, Naslund E, Gryback P, Jacobsson H, Holst JJ, Hilsted L, et al. A role for pancreatic polypeptide in the regulation of gastric emptying and short term metabolic control. J Clin Endocrinol Metab. 2005;90:5241–6.

    Article  CAS  PubMed  Google Scholar 

  17. Zipf WB, O'Dorisio TM, Cataland S, Sotos J. Blunted pancreatic polypeptide responses in children with obesity of Prader–Willi syndrome. J Clin Endocrinol Metab. 1981;52:1264–6.

    Article  CAS  PubMed  Google Scholar 

  18. Orskov C, Rabenhoj L, Wettergren A, Kofod H, Holst JJ. Tissue and plasma concentrations of amidated and glycine-extended glucagon-like peptide I in humans. Diabetes. 1994;43:535–9.

    Article  CAS  PubMed  Google Scholar 

  19. Gallwitz B, Witt M, Folsch UR, Creutzfeldt W, Schmidt WE. Binding specificity and signal transduction of receptors for glucagon-like peptide-1(7-36)amide and gastric inhibitory polypeptide on RINm5F insulinoma cells. J Mol Endocrinol. 1993;10:259–68.

    Article  CAS  PubMed  Google Scholar 

  20. Holst JJ. Glucagon-like peptide-1: physiology and therapeutic potential. Curr Opin Endocrinol Diab. 2005;12:56–62.

    Article  CAS  Google Scholar 

  21. Gutzwiller JP, Drewe J, Goke B, Schmidt H, Rohrer B, Lareida J, et al. Glucagon-like peptide-1 promotes satiety and reduces food intake in patients with diabetes mellitus type 2. Am J Physiol. 1999;276:R1541–4.

    CAS  PubMed  Google Scholar 

  22. Naslund E, King N, Mansten S, Adner N, Holst JJ, Gutniak M, et al. Prandial subcutaneous injections of glucagon-like peptide-1 cause weight loss in obese human subjects. Br J Nutr. 2004;91:439–46.

    Article  PubMed  Google Scholar 

  23. Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature. 1999;402:656–60.

    Article  CAS  PubMed  Google Scholar 

  24. Wang HS, Oh DS, Ohning GV, Pisegna JR. Elevated serum ghrelin exerts an orexigenic effect that may maintain body mass index in patients with metastatic neuroendocrine tumors. J Mol Neurosci. 2007;33:225–31.

    Article  CAS  PubMed  Google Scholar 

  25. Miyata A, Arimura A, Dahl RR, Minamino N, Uehara A, Jiang L, et al. Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem Biophys Res Commun. 1989;164:567–74.

    Article  CAS  PubMed  Google Scholar 

  26. Vaudry D, Falluel-Morel A, Bourgault S, Basille M, Burel D, Wurtz O, et al. Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery. Pharmacol Rev. 2009;61:283–357.

    Article  CAS  PubMed  Google Scholar 

  27. Pisegna JR, Wank SA. Cloning and characterization of the signal transduction of four splice variants of the human pituitary adenylate cyclase activating polypeptide receptor. Evidence for dual coupling to adenylate cyclase and phospholipase C. J Biol Chem. 1996;271:17267–74.

    Article  CAS  PubMed  Google Scholar 

  28. Harmar AJ, Fahrenkrug J, Gozes I, Laburthe M, May V, Pisegna JR, et al. Pharmacology and functions of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide: IUPHAR review 1. Br J Pharmacol. 2012;166:4–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Miampamba M, Germano PM, Arli S, Wong HH, Scott D, Taché Y, et al. Expression of pituitary adenylate cyclase-activating polypeptide and PACAP type 1 receptor in the rat gastric and colonic myenteric neurons. Regul Pept. 2002;105:145–54.

    Article  CAS  PubMed  Google Scholar 

  30. Köves K, Arimura A, Vigh S, Somogyvári-Vigh A, Miller J. Immunohistochemical localization of PACAP in the ovine digestive system. Peptides. 1993;14:449–55.

    Article  PubMed  Google Scholar 

  31. Buscail L, Gourlet P, Cauvin A, De Neef P, Gossen D, Arimura A, et al. Presence of highly selective receptors for PACAP (pituitary adenylate cyclase activating peptide) in membranes from the rat pancreatic acinar cell line AR 4-2J. FEBS Lett. 1990;262:77–81.

    Article  CAS  PubMed  Google Scholar 

  32. Tornøe K, Hannibal J, Fahrenkrug J, Holst JJ. PACAP-(1–38). Am J Physiol. 1997;273:G436–46.

    PubMed  Google Scholar 

  33. Fridolf T, Sundler F, Ahrén B. Pituitary adenylate cyclase activating polypeptide (PACAP): occurrence in rodent pancreas and effects on insulin and glucagon secretion in the mouse. Cell Tissue Res. 1992;269:275–9.

    Article  CAS  PubMed  Google Scholar 

  34. Filipsson K, Tornøe K, Holst J, Ahrén B. Pituitary adenylate cyclase-activating polypeptide stimulates insulin and glucagon secretion in humans. J Clin Endocrinol Metab. 1997;82:3093–8.

    CAS  PubMed  Google Scholar 

  35. Persson-Sjögren S, Forsgren S, Lindström P. Vasoactive intestinal polypeptide and pituitary adenylate cyclase activating polypeptide: effects on insulin release in isolated mouse islets in relation to metabolic status and age. Neuropeptides. 2006;40:283–90.

    Article  PubMed  Google Scholar 

  36. Nakata M, Yada T. PACAP in the glucose and energy homeostasis: physiological role and therapeutic potential. Curr Pharm Des. 2007;13:1105–12.

    Article  CAS  PubMed  Google Scholar 

  37. Ahrén B. Role of pituitary adenylate cyclase-activating polypeptide in the pancreatic endocrine system. Ann N Y Acad Sci. 2008;1144:28–35.

    Article  PubMed  Google Scholar 

  38. Borboni P, Porzio O, Pierucci D, Cicconi S, Magnaterra R, Federici M, et al. Molecular and functional characterization of pituitary adenylate cyclase-activating polypeptide (PACAP-38)/vasoactive intestinal polypeptide receptors in pancreatic beta-cells and effects of PACAP-38 on components of the insulin secretory system. Endocrinology. 1999;140:5530–7.

    CAS  PubMed  Google Scholar 

  39. Sakurai Y, Shintani N, Hayata A, Hashimoto H, Baba A. Trophic effects of PACAP on pancreatic islets: a mini-review. J Mol Neurosci. 2011;43:3–7.

    Article  CAS  PubMed  Google Scholar 

  40. Jamen F, Persson K, Bertrand G, Rodriguez-Henche N, Puech R, Bockaert J, et al. PAC1 receptor-deficient mice display impaired insulinotropic response to glucose and reduced glucose tolerance. J Clin Invest. 2000;105:1307–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Raufman JP, Malhotra R, Singh L. PACAP-38, a novel peptide from ovine hypothalamus, is a potent modulator of amylase release from dispersed acini from rat pancreas. Regul Pept. 1991;36:121–9.

    Article  CAS  PubMed  Google Scholar 

  42. Mungan Z, Ertan A, Hammer RA, Arimura A. Effect of pituitary adenylate cyclase activating polypeptide on rat pancreatic exocrine secretion. Peptides. 1991;12:559–62.

    Article  CAS  PubMed  Google Scholar 

  43. Alonso RM, Rodríguez AM, García LJ, López MA, Calvo JJ. Comparison between the effects of VIP and the novel peptide PACAP on the exocrine pancreatic secretion of the rat. Pancreas. 1994;9:123–8.

    Article  CAS  PubMed  Google Scholar 

  44. Michalski CW, Selvaggi F, Bartel M, Mitkus T, Gorbachevski A, Giese T, et al. Altered anti-inflammatory response of mononuclear cells to neuropeptide PACAP is associated with deregulation of NF-{kappa}B in chronic pancreatitis. Am J Physiol Gastrointest Liver Physiol. 2008;294:G50–7.

    Article  CAS  PubMed  Google Scholar 

  45. Reubi JC. In vitro evaluation of VIP/PACAP receptors in healthy and diseased human tissues. Clinical implications. Ann N Y Acad Sci. 2000;921:1–25.

    Article  CAS  PubMed  Google Scholar 

  46. Germano PM, Lieu SN, Xue J, Cooke HJ, Christofi FL, Lu Y, et al. PACAP induces signaling and stimulation of 5-hydroxytryptamine release and growth in neuroendocrine tumor cells. J Mol Neurosci. 2009;39:391–401.

    Article  CAS  PubMed  Google Scholar 

  47. Lieu SN, Oh DS, Pisegna JR, Germano PM. Neuroendocrine tumors express PAC1 receptors. Ann N Y Acad Sci. 2006;1070:399–404.

    Article  CAS  PubMed  Google Scholar 

  48. Zeng N, Kang T, Wong H, Walsh JH, Sachs GA, Pisegna JR. PACAP Type I receptor activation regulates ECL cells and gastric acid secretion. J Clin Invest. 1999;104:1383–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lu Y, Germano P, Ohning GV, Vu JP, Pisegna JR. PAC1 Deficiency in a murine model induces gastric mucosa hypertrophy and higher basal gastric acid output. J Mol Neurosci. 2011;43:76–84.

    Article  CAS  PubMed  Google Scholar 

  50. Said SI, Mutt V. Polypeptide with broad biological activity: isolation from small intestine. Science. 1970;169:1217–8.

    Article  CAS  PubMed  Google Scholar 

  51. Vaudry D, Gonzalez BJ, Basille M, Yon L, Fournier A, Vaudry H. Pituitary adenylate cyclase-activating polypeptide and its receptors: from structure to functions. Pharmacol Rev. 2000;52:269–324.

    CAS  PubMed  Google Scholar 

  52. Tachibana T, Saito S, Tomonaga S, Takagi T, Saito ES, Boswell T, et al. Intracerebroventricular injection of vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide inhibits feeding in chicks. Neurosci Lett. 2003;339:203–6.

    Article  CAS  PubMed  Google Scholar 

  53. Lelievre V, Favrais G, Abad C, Adle-Biassette H, Lu Y, Germano PM, et al. Gastrointestinal dysfunction in mice with a targeted mutation in the gene encoding vasoactive intestinal polypeptide: a model for the study of intestinal ileus and Hirschsprung’s Disease. Peptides. 2007;28:1688–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Vu JP, Larauche M, Flores M, Luong L, Norris J, Oh S, et al. Regulation of appetite, body composition, and metabolic hormones by vasoactive intestinal polypeptide (VIP). J Mol Neurosci. 2015;56:377–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lim MA, Stack CM, Cuasay K, Stone MM, McFarlane HG, Waschek JA, et al. Regardless of genotype, offspring of VIP-deficient female mice exhibit developmental delays and deficits in social behavior. Int J Dev Neurosci. 2008;26:423–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Girard BA, Lelievre V, Braas KM, Razinia T, Vizzard MA, Ioffe Y, et al. Noncompensation in peptide/receptor gene expression and distinct behavioral phenotypes in VIP- and PACAP-deficient mice. J Neurochem. 2006;99:499–513.

    Article  CAS  PubMed  Google Scholar 

  57. Hill JM, Mervis RF, Politi J, McCune SK, Gozes I, Fridkin M, et al. Blockade of VIP during neonatal development induces neuronal damage and increases VIP and VIP receptors in brain. Ann N Y Acad Sci. 1994;739:211–25.

    Article  CAS  PubMed  Google Scholar 

  58. Liu YJ, Guo YF, Zhang LS, Pei YF, Yu N, Yu P, et al. Biological pathway-based genome-wide association analysis identified the vasoactive intestinal peptide (VIP) pathway important for obesity. Obesity (Silver Spring). 2010;18:2339–46.

    Article  CAS  Google Scholar 

  59. Ressler KJ, Mercer KB, Bradley B, Jovanovic T, Mahan A, Kerley K, et al. Post-traumatic stress disorder is associated with PACAP and the PAC1 receptor. Nature. 2011;470:492–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Akesson L, Ahrén B, Edgren G, Degerman E. VPAC2-R mediates the lipolytic effects of pituitary adenylate cyclase-activating polypeptide/vasoactive intestinal polypeptide in primary rat adipocytes. Endocrinology. 2005;146:744–50.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work received grant support from: Department of Veterans Affairs RR&D Merit Review (JRP and PMJ); Animal Core Services performed through CURE: Digestive Diseases Research Center supported by NIH grant P30DK41301; NIH NIDDK DK07180 T32 (JB).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph R. Pisegna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vu, J.P. et al. (2016). PACAP Regulation of Gastrointestinal Function and Obesity. In: Reglodi, D., Tamas, A. (eds) Pituitary Adenylate Cyclase Activating Polypeptide — PACAP. Current Topics in Neurotoxicity, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-35135-3_16

Download citation

Publish with us

Policies and ethics