Skip to main content

PACAP in the Circadian Timing System: Learning from Knockout Models

  • Chapter
  • First Online:
Pituitary Adenylate Cyclase Activating Polypeptide — PACAP

Part of the book series: Current Topics in Neurotoxicity ((Current Topics Neurotoxicity,volume 11))

Abstract

Glutamate and PACAP are neurotransmitters of the retinohypothalamic tract (RHT). This retinofugal pathway originates from melanopsin expressing intrinsically photosensitive retinal ganglion cells (ipRGCs) innervating areas in the brain which regulate the circadian timing system and areas involved in non-image forming photoperception (e.g., negative masking, pupillary light reflex). The major target is the suprachiasmatic nucleus (SCN), which generates circadian rhythms in behavior and physiology. The SCN is daily entrained to the light–dark cycle due to the release of glutamate and PACAP and activation of NMDA and the PACAP specific (PAC1) receptor on SCN neurons. The chapter briefly reviews in vitro and in vivo experiments and compares these data with physiology and gene expression data obtained from mice lacking PACAP, PAC1 receptor or glutamate signaling (VGLUT2-deficient mice). Together, the data provides evidence for PACAP being a neurotransmitter in the RHT acting together with glutamate regulating light entrainment, masking behavior, and the pupillary light reflex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Reppert SM, Weaver DR. Coordination of circadian timing in mammals. Nature. 2002;418:935–41.

    Article  CAS  PubMed  Google Scholar 

  2. Mohawk JA, Takahashi JS. Cell autonomy and synchrony of suprachiasmatic nucleus circadian oscillators. Trends Neurosci. 2011;34:349–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mohawk JA, Green CB, Takahashi JS. Central and peripheral circadian clocks in mammals. Annu Rev Neurosci. 2012;35:445–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Golombek DA, Rosenstein RE. Physiology of circadian entrainment. Physiol Rev. 2010;90:1063–102.

    Article  CAS  PubMed  Google Scholar 

  5. Sand A, Schmidt TM, Kofuji P. Diverse types of ganglion cell photoreceptors in the mammalian retina. Prog Retin Eye Res. 2012;31:287–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Do MT, Yau KW. Intrinsically photosensitive retinal ganglion cells. Physiol Rev. 2010;90:1547–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hannibal J. Roles of PACAP-containing retinal ganglion cells in circadian timing. Int Rev Cytol. 2006;251:1–39.

    Article  CAS  PubMed  Google Scholar 

  8. Sousa-Pinto A, Castro-Correia J. Light microscopic observations on the possible retinohypothalamic projection in the rat. Exp Brain Res. 1970;11:515–27.

    CAS  PubMed  Google Scholar 

  9. Hendrickson AE, Wagoner N, Cowan WM. An autoradiographic and electron microscopic study of retino-hypothalamic connections. Z Zellforsch Mikrosk Anat. 1972;135:1–26.

    Article  CAS  PubMed  Google Scholar 

  10. Moore RY, Lenn NJ. A retinohypothalamic projection in the rat. J Comp Neurol. 1972;146:1–14.

    Article  CAS  PubMed  Google Scholar 

  11. Pickard GE. Morphological characteristics of retinal ganglion cells projecting to the suprachiasmatic nucleus: a horseradish peroxidase study. Brain Res. 1980;183:458–65.

    Article  CAS  PubMed  Google Scholar 

  12. Ebling FJ. The role of glutamate in the photic regulation of the suprachiasmatic nucleus. Prog Neurobiol. 1996;50:109–32.

    Article  CAS  PubMed  Google Scholar 

  13. Ding JM, Chen D, Weber ET, Faiman LE, Rea MA, Gillette MU. Resetting the biological clock: mediation of nocturnal circadian shifts by glutamate and NO. Science. 1994;266:1713–7.

    Article  CAS  PubMed  Google Scholar 

  14. Kornhauser JM, Nelson DE, Mayo KE, Takahashi JS. Photic and circadian regulation of c-fos gene expression in the hamster suprachiasmatic nucleus. Neuron. 1990;5:127–34.

    Article  CAS  PubMed  Google Scholar 

  15. Hannibal J. Neurotransmitters of the retino-hypothalamic tract. Cell Tissue Res. 2002;309:73–88.

    Article  CAS  PubMed  Google Scholar 

  16. Nielsen HS, Hannibal J, Knudsen SM, Fahrenkrug J. Pituitary adenylate cyclase-activating polypeptide induces period1 and period2 gene expression in the rat suprachiasmatic nucleus during late night. Neuroscience. 2001;103:433–41.

    Article  CAS  PubMed  Google Scholar 

  17. Nassel DR. Neuropeptide signaling near and far: how localized and timed is the action of neuropeptides in brain circuits? Invert Neurosci. 2009;9:57–75.

    Article  PubMed  Google Scholar 

  18. Hannibal J, Ding JM, Chen D, Fahrenkrug J, Larsen PJ, Gillette MU, et al. Pituitary adenylate cyclase activating peptide (PACAP) in the retinohypothalamic tract. A daytime regulator of the biological clock. J Neurosci. 1997;17:2637–44.

    CAS  PubMed  Google Scholar 

  19. Engelund A, Fahrenkrug J, Harrison A, Hannibal J. Vesicular glutamate transporter 2 (VGLUT2) is co-stored with PACAP in projections from the rat melanopsin-containing retinal ganglion cells. Cell Tissue Res. 2010;340:243–55.

    Article  CAS  PubMed  Google Scholar 

  20. Hannibal J, Moller M, Ottersen OP, Fahrenkrug J. PACAP and glutamate are co-stored in the retinohypothalamic tract. J Comp Neurol. 2000;418:147–55.

    Article  CAS  PubMed  Google Scholar 

  21. Hannibal J, Vrang N, Card JP, Fahrenkrug J. Light dependent induction of c-Fos during subjective day and night in PACAP containing retinal ganglion cells of the retino-hypothalmic tract. J Biol Rhythms. 2001;16:457–70.

    Article  CAS  PubMed  Google Scholar 

  22. Freedman MS, Lucas RJ, Soni B, von Schantz M, Muñoz M, David-Gray Z, et al. Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. Science. 1999;284:502–4.

    Article  CAS  PubMed  Google Scholar 

  23. Lucas RJ, Freedman MS, Munoz M, Garcia-Fernandez JM, Foster RG. Regulation of the mammalian pineal by non-rod, non-cone, ocular photoreceptors. Science. 1999;284:505–7.

    Article  CAS  PubMed  Google Scholar 

  24. Hannibal J, Hindersson P, Knudsen SM, Georg B, Fahrenkrug J. The photopigment melanopsin is exclusively present in PACAP containing retinal ganglion cells of the retinohypothalamic tract. J Neurosci. 2002;22(RC191):1–7.

    Google Scholar 

  25. Hattar S, Liao HW, Takao M, Berson DM, Yau KW. Melanopsin-containing retinal ganglion cells: Architecture, projections, and intrinsic photosensitivity. Science. 2002;295:1065–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Berson DM, Dunn FA, Takao M. Phototransduction by retinal ganglion cells that set the circadian clock. Science. 2002;295:1070–3.

    Article  CAS  PubMed  Google Scholar 

  27. Bergström AL, Hannibal J, Hindersson P, Fahrenkrug J. Light-induced phase shift in the Syrian hamster (Mesocricetus auratus)is attenuated by the PACAP receptor antagonist PACAP6-38 or PACAP immunoneutralization. Eur J Neurosci. 2003;9:2552–62.

    Article  Google Scholar 

  28. Engelund A, Fahrenkrug J, Harrison A, Luuk H, Hannibal J. Altered pupillary light reflex in PACAP receptor 1-deficient mice. Brain Res. 2012;1453:17–25.

    Article  CAS  PubMed  Google Scholar 

  29. Hannibal J, Hindersson P, Ostergaard J, Georg B, Heegaard S, Larsen PJ, et al. Melanopsin is expressed in PACAP-containing retinal ganglion cells of the human retinohypothalamic tract. Invest Ophthalmol Vis Sci. 2004;45:4202–9.

    Article  PubMed  Google Scholar 

  30. Hannibal J, Kankipati L, Strang CE, Peterson BB, Dacey D, Gamlin PD. Central projections of intrinsically photosensitive retinal ganglion cells in the macaque monkey. J Comp Neurol. 2014;522:2231–48.

    Article  CAS  PubMed  Google Scholar 

  31. Hannibal J, Fahrenkrug J. Target areas innervated by PACAP immunoreactive retinal ganglion cells. Cell Tissue Res. 2004;316:99–113.

    Article  CAS  PubMed  Google Scholar 

  32. Chen D, Buchanan GF, Ding JM, Hannibal J, Gillette MU. PACAP: a pivotal modulator of glutamatergic regulation of the suprachiasmatic circadian clock. Proc Natl Acad Sci U S A. 1999;96:13409–14.

    Article  Google Scholar 

  33. Harrington ME, Hoque S, Hall A, Golombek D, Biello S. Pituitary adenylate cyclase activating peptide phase shifts circadian rhythms in a manner similar to light. J Neurosci. 1999;19:6637–42.

    CAS  PubMed  Google Scholar 

  34. Minami Y, Furuno K, Akiyama M, Moriya T, Shibata S. Pituitary adenylate cyclase-activating polypeptide produces a phase shift associated with induction of mPer expression in the mouse suprachiasmatic nucleus. Neuroscience. 2002;113:37–45.

    Article  CAS  PubMed  Google Scholar 

  35. Piggins HD, Marchant EG, Goguen D, Rusak B. Phase-shifting effects of pituitary adenylate cyclase activating polypeptide on hamster wheel-running rhythms. Neurosci Lett. 2001;305:25–8.

    Article  CAS  PubMed  Google Scholar 

  36. Hashimoto H, Shintani N, Tanaka K, Mori W, Hirose M, Matsuda T, et al. Altered psychomotor behaviors in mice lacking pituitary adenylate cyclase-activating polypeptide (PACAP). Proc Natl Acad Sci U S A. 2001;98:13355–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Kawaguchi C, Isojima Y, Shintani N, Hatanaka M, Guo X, Okumura N, et al. PACAP-deficient mice exhibit light parameter-dependent abnormalities on nonvisual photoreception and early activity onset. PLoS One. 2010;5:e9286.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Kawaguchi C, Tanaka K, Isojima Y, Shintani N, Hashimoto H, Baba A, et al. Changes in light-induced phase shift of circadian rhythm in mice lacking PACAP. Biochem Biophys Res Commun. 2003;310:169–75.

    Article  CAS  PubMed  Google Scholar 

  39. Guler AD, Ecker JL, Lall GS, Haq S, Altimus CM, Liao HW, et al. Melanopsin cells are the principal conduits for rod-cone input to non-image-forming vision. Nature. 2008;453:102–5.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Colwell CS, Michel S, Itri J, Rodriguez W, Tam J, Lelievre V, et al. Selective deficits in the circadian light response in mice lacking PACAP. Am J Physiol Regul Integr Comp Physiol. 2004;287:R1194–201.

    Article  CAS  PubMed  Google Scholar 

  41. Hannibal J, Brabet P, Fahrenkrug J. Mice lacking the PACAP type I receptor have impaired photic entrainment and negative masking. Am J Physiol Regul Integr Comp Physiol. 2008;295:R2050–8.

    Article  CAS  PubMed  Google Scholar 

  42. Hannibal J, Brabet P, Jamen F, Nielsen HS, Journot L, Fahrenkrug J. Dissociation between light induced phase shift of the circadian rhythm and clock gene expression in mice lacking the PACAP type 1 receptor (PAC1). J Neurosci. 2001;21:4883–90.

    CAS  PubMed  Google Scholar 

  43. Schmidt TM, Chen SK, Hattar S. Intrinsically photosensitive retinal ganglion cells: many subtypes, diverse functions. Trends Neurosci. 2011;34:572–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Takamori S. VGLUTs: “exciting” times for glutamatergic research? Neurosci Res. 2006;55:343–51.

    Article  CAS  PubMed  Google Scholar 

  45. Fujiyama F, Hioki H, Tomioka R, Taki K, Tamamaki N, Nomura S, et al. Changes of immunocytochemical localization of vesicular glutamate transporters in the rat visual system after the retinofugal denervation. J Comp Neurol. 2003;465:234–49.

    Article  CAS  PubMed  Google Scholar 

  46. Johnson J, Fremeau Jr RT, Duncan JL, Renteria RC, Yang H, Hua Z, et al. Vesicular glutamate transporter 1 is required for photoreceptor synaptic signaling but not for intrinsic visual functions. J Neurosci. 2007;27:7245–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Purrier N, Engeland WC, Kofuji P. Mice deficient of glutamatergic signaling from intrinsically photosensitive retinal ganglion cells exhibit abnormal circadian photoentrainment. PLoS One. 2014;9:e111449.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Tong Q, Ye C, McCrimmon RJ, Dhillon H, Choi B, Kramer MD, et al. Synaptic glutamate release by ventromedial hypothalamic neurons is part of the neurocircuitry that prevents hypoglycemia. Cell Metab. 2007;5:383–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Gompf HS, Fuller PM, Hattar S, Saper CB, Lu J. Impaired circadian photosensitivity in mice lacking glutamate transmission from retinal melanopsin cells. J Biol Rhythms. 2015;30:35–41.

    Article  CAS  PubMed  Google Scholar 

  50. Walmsley L, Hanna L, Mouland J, Martial F, West A, Smedley AR, et al. Colour as a signal for entraining the mammalian circadian clock. PLoS Biol. 2015;13:e1002127.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The Danish Biotechnology Center for Cellular Communication supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Hannibal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Hannibal, J. (2016). PACAP in the Circadian Timing System: Learning from Knockout Models. In: Reglodi, D., Tamas, A. (eds) Pituitary Adenylate Cyclase Activating Polypeptide — PACAP. Current Topics in Neurotoxicity, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-319-35135-3_14

Download citation

Publish with us

Policies and ethics