Advertisement Towards a Reusable, Modular, and RESTFul Social Recommender System

  • Matthäus Schmedding
  • Michael Fuchs
  • Claus-Peter KlasEmail author
  • Felix Engel
  • Holger Brock
  • Dominic Heutelbeck
  • Matthias Hemmje
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9679)


Many different recommender system (RS) frameworks have been developed by the research community. Most of these RS frameworks are designed only for research purposes and offline evaluation of different algorithms. A reuse of such frameworks in a productive environment is only possible with high effort. In this paper, we present a concept of a generic reusable RESTful recommender web service framework, designed to perform directly offline and online analysis for research and to use the recommender algorithms in production.


Recommender systems Web service Modular development 


  1. 1.
    Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17(6), 734–749 (2005)CrossRefGoogle Scholar
  2. 2.
    Ekstrand, M.D., Riedl, J.T., Konstan, J.A.: Collaborative filtering recommender systems. Found. Trends Hum. Comput. Interact. 4(2), 81–173 (2011)CrossRefGoogle Scholar
  3. 3.
    Gantner, Z., Rendle, S., Freudenthaler, C., Schmidt-Thieme, L.: MyMediaLite: A free recommender system library. In: Proceedings of the 5th ACM Conference on Recommender Systems (RecSys 2011) (2011)Google Scholar
  4. 4.
    Gunawardana, A., Shani, G.: A survey of accuracy evaluation metrics of recommendation tasks. J. Mach. Learn. Res. 10, 2935–2962 (2009)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Guo, G., Zhang, J., Sun, Z., Yorke-Smith, N.: Librec: A java library for recommender systems. In: Posters, Demos, Late-breaking Results and Workshop Proceedings of the 23rd Conference on User Modeling, Adaptation, and Personalization (UMAP 2015) (2015)Google Scholar
  6. 6.
    He, J.: A Social Network-based Recommender System. Ph.D. thesis, Los Angeles, CA, USA, AAI3437557 (2010)Google Scholar
  7. 7.
    Heineman, G.T., Councill, W.T.: Component-Based Software Engineering: Putting the Pieces Together. Addison-Wesley, Boston (2001)Google Scholar
  8. 8.
    Jannach, D., Lerche, L., Gedikli, F., Bonnin, G.: What recommenders recommend – an analysis of accuracy, popularity, and sales diversity effects. In: Carberry, S., Weibelzahl, S., Micarelli, A., Semeraro, G. (eds.) UMAP 2013. LNCS, vol. 7899, pp. 25–37. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  9. 9.
    Lee, J., Sun, M., Lebanon, G.: A Comparative Study of Collaborative Filtering Algorithms. ArXiv e-prints, May 2012Google Scholar
  10. 10.
    Owen, S., Anil, R., Dunning, T., Friedman, E.: Mahout in Action. Manning Publications Co., Greenwich, CT, USA (2011)Google Scholar
  11. 11.
    Surhone, L., Tennoe, M., Henssonow, S.: EASYREC. Betascript Publishing, Saarbrücken (2010)Google Scholar
  12. 12.
    van Setten, M., Reitsma, J., Ebben, P.: Duine Toolkit: User Manual. Telematica Instituut, 2.0.3rd edn. (2006)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Matthäus Schmedding
    • 1
  • Michael Fuchs
    • 2
  • Claus-Peter Klas
    • 1
    Email author
  • Felix Engel
    • 1
  • Holger Brock
    • 1
  • Dominic Heutelbeck
    • 1
  • Matthias Hemmje
    • 1
  1. 1.Faculty for Mathematics and Computer ScienceUniversity of HagenHagenGermany
  2. 2.Wilhelm Büchner University of Applied SciencesDarmstadtGermany

Personalised recommendations