Skip to main content

APbI3 (A = CH3NH3 and HC(NH2)2) Perovskite Solar Cells: From Sensitization to Planar Heterojunction

  • Chapter
  • First Online:
Organic-Inorganic Halide Perovskite Photovoltaics

Abstract

Since the first report on long-term stable solid-state perovskite solar cell with a power conversion efficiency (PCE) of 9.7 % based on methylammonium lead iodide in 2012, a certified PCE of 21 % was demonstrated in 2015. Methylammonium lead halide perovskite materials were first attempted as sensitizers in a liquid electrolyte based on dye-sensitized solar cell structure in 2009, showing PCE as low as ~4 %, which was almost doubled in performance by intensifying loading concentration of perovskite in the thinner TiO2 film in 2011. Lead halide perovskites employing organic ammonium cations such as methylammonium and formamidinium are undoubtedly promising photovoltaic materials. In this chapter, emergency and structural evolutions of perovskite solar cell are described. Basic fundamentals of perovskite materials are described in terms of absorption coefficient, refractive index, dielectric constant, and carrier mobility. Since the perovskite film quality is directly related to its photovoltaic performance, effective methods for high PCE solar cells are described based on two-step spin-coating and adduct approach. Lower band gap perovskite with formamidinium is one of the promising materials because of higher photocurrent without losing photovoltage than methylammonium case. High-quality formamidinium lead iodide films can be prepared by two-step or adduct methods, which is related to photovoltaic performance. Stability issues such as photo-, moisture, and thermal-stabilities are mentioned and methodologies to solve the underlying instability problems are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T.: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009)

    Article  Google Scholar 

  2. Im, J.H., Lee, C.R., Lee, J.W., Park, S.W., Park, N.G.: 6.5 % efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3, 4088–4093 (2011)

    Article  Google Scholar 

  3. Kim, H.S., Lee, C.R., Im, J.H., Lee, K.B., Moehl, T., Marchioro, A., Moon, S.J., Humphry-Baker, R., Yum, J.H., Grätzel, M., Park, N.G.: Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9 %. Sci. Rep. 2, 591 (2012)

    Google Scholar 

  4. Lee, M.M., Teuscher, J., Miyasaka, T., Murakami, T.N., Snaith, H.J.: Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012)

    Article  Google Scholar 

  5. Best Research-Cell Efficiencies. National Renewable Energy Laboratory, Golden. http://www.nrel.gov/ncpv/images/efficiency_chart.jpg (2016). Accessed 02 Mar 2016

  6. Noel, N.K., Stranks, S.D., Abate, A., Wehrenfennig, C., Guarnera, S., Haghighirad, A.A., Sadhanala, A., Eperon, G.E., Pathak, S.K., Johnston, M.B., Petrozza, A., Herz, L.M., Snaith, H.J.: Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 7, 3061–3068 (2014)

    Article  Google Scholar 

  7. Hao, F., Stoumpos, C.C., Cao, D.H., Chang, R.P.H., Kanatzidis, M.G.: Lead-free solid-state organic-inorganic halide perovskite solar cells. Nat. Photonics 8, 489–494 (2014)

    Article  Google Scholar 

  8. Hao, F., Stoumpos, C.C., Chang, R.P.H., Kanatzidis, M.G.: Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. J. Am. Chem. Soc. 136, 8094–8099 (2014)

    Article  Google Scholar 

  9. Noh, J.H., Im, S.H., Heo, J.G., Mandal, T.N., Seok, S.I.: Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett. 13, 1764–1769 (2013)

    Article  Google Scholar 

  10. Heo, J.H., Song, D.H., Im, S.H.: Planar CH3NH3PbBr 3 hybrid solar cells with 10.4 % power conversion efficiency, fabricated by controlled crystallization in the spin-coating process. Adv. Mater. 26, 8179–8183 (2014)

    Article  Google Scholar 

  11. Yin, W.J., Yang, J.H., Kang, J., Yan, Y., Wei, S.H.: Halide perovskite materials for solar cells: a theoretical review. J. Mater. Chem. A 3, 8926–8942 (2015)

    Article  Google Scholar 

  12. Geng, W., Zhang, L., Zhang, Y.N., Lau, W.M., Liu, L.M.: First-principles study of lead iodide perovskite tetragonal and orthorhombic phases for photovoltaics. J. Phys. Chem. C 118, 19565–19571 (2014)

    Article  Google Scholar 

  13. Motta, C., El-Mellouhi, F., Kais, S., Tabet, N., Alharbi, F., Sanvito, S.: Revealing the role of organic cations in hybrid halide perovskite CH3NH3PbI3. Nat. Commun. 6, 7026 (2014)

    Article  Google Scholar 

  14. Amat, A., Mosconi, E., Ronca, E., Quarti, C., Umari, P., Nazeeruddin, M.K., Grätzel, M., Angelis, F.D.: Cation-induced band-gap tuning in organohalide perovskites: interplay of spin-orbit coupling and octahedra tilting. Nano Lett. 14, 3608–3616 (2014)

    Article  Google Scholar 

  15. Goldschmidt, V.V.M.: Die gesetze der krystallochemie. Naturwissenschaften 21, 477–485 (1926)

    Article  Google Scholar 

  16. Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A32, 751–767 (1976)

    Article  Google Scholar 

  17. Baikie, T., Fang, Y., Kadro, J.M., Schreyer, M., Wei, F., Mhaisalkar, S.G., Grätzel, M., White, T.J.: Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. J. Mater. Chem. A 1, 5628–5641 (2013)

    Article  Google Scholar 

  18. Jung, H.S., Park, N.G.: Perovskite solar cells: from materials to devices. Small 11, 10–25 (2015)

    Article  Google Scholar 

  19. Kieslich, G., Sun, S., Cheetham, A.K.: An extended tolerance factor approach for organic–inorganic perovskites. Chem. Sci. 6, 3430–3433 (2015)

    Article  Google Scholar 

  20. Lee, J.W., Kim, D.H., Kim, H.S., Seo, S.W., Cho, S.M., Park, N.G.: Formamidinium and cesium hybridization for photo-and moisture-stable perovskite solar cell. Adv. Energy Mater. 5, 1501310 (2015)

    Article  Google Scholar 

  21. Poglitsch, A., Weber, D.: Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter-wave spectroscopy. J Chem Phys 87, 6373–6378 (1987)

    Article  Google Scholar 

  22. Leguy, A.M.A., Frost, J.M., McMahon, A.P., Sakai, V.G., Kockelmann, W., Law, C., Li, X., Foglia, F., Walsh, A., O`Regan, B.C., Nelson, J., Cabral, J.T., Barnes, P.R.F.: The dynamics of methylammonium ions in hybrid organic-inorganic perovskite solar cells. Nat. Commun. 6, 7124 (2015)

    Article  Google Scholar 

  23. Cojocaru, L., Uchida, S., Sanehira, Y., Gonzalez-Pedro, V., Bisquert, J., Nakazaki, J., Kubo, T., Segawa, H.: Temperature effects on the photovoltaic performance of planar structure perovskite solar cells. Chem. Lett. (2015). doi:10.1246/cl.150781

    Google Scholar 

  24. Niu, G., Li, W., Meng, F., Wang, L., Dong, H., Qiu, Y.: Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells. J. Mater. Chem. A 2, 705–710 (2014)

    Article  Google Scholar 

  25. Ito, S., Tanaka, S., Manabe, K., Nishino, H.: Effects of surface blocking layer of Sb2S3 on nanocrystalline TiO2 for CH3NH3PbI3 perovskite solar cells. J. Phys. Chem. C 118, 16995–17000 (2014)

    Article  Google Scholar 

  26. Yang, J., Siempelkamp, B.D., Liu, D., Kelly, T.L.: Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques. ACS Nano 9, 1955–1963 (2015)

    Article  Google Scholar 

  27. Misra, R.K., Aharon, S., Li, B., Mogilyansky, D., Visoly-Fisher, I., Etgar, L., Katz, E.A.: Temperature-and component-dependent degradation of perovskite photovoltaic materials under concentrated sunlight. J. Phys. Chem. Lett. 6, 326–330 (2015)

    Article  Google Scholar 

  28. Koh, T.M., Fu, K., Fang, Y., Chen, S., Sum, T.C.: Formamidinium-containing metal-halide: an alternative material for near-IR absorption perovskite solar cells. J. Phys. Chem. C 118, 16458–16462 (2014)

    Article  Google Scholar 

  29. Eperon, G.E., Stranks, S.D., Menelaou, C., Johnston, M.B., Herz, L.M., Snaith, H.J.: Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7, 982–988 (2014)

    Article  Google Scholar 

  30. Lee, J.W., Seol, D.J., Cho, A.N., Park, N.G.: High-efficiency perovskite solar cells based on the black polymorph of HC(NH2)2PbI3. Adv. Mater. 26, 4991–4998 (2014)

    Article  Google Scholar 

  31. Xing, G., Mathews, N., Sun, S., Lim, S.S., Lam, Y.M., Grätzel, M., Mhaisalkar, S., Sum, T.C.: Long-range balanced electron-and hole-transport lengths in organic-inorganic CH3NH3PbI3. Science 342, 344–347 (2013)

    Article  Google Scholar 

  32. Green, M.A., Jiang, Y., Soufiani, A.M., Ho-Baillie, A.: Optical properties of photovoltaic organic-inorganic lead halide perovskites. J. Phys. Chem. Lett. 6, 4774–4785 (2015)

    Article  Google Scholar 

  33. Wemple, S.H., DiDomenico, M.: Behavior of the electronic dielectric constant in covalent and ionic materials. Phys. Rev. B 3, 1338–1351 (1971)

    Article  Google Scholar 

  34. Singh, J.: Smart Electronic Materials. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  35. Even, J., Pedesseau, L., Katan, C., Kepenekian, M., Lauret, J.S., Sapori, D., Deleporte, E.: Solid-state physics perspective on hybrid perovskite semiconductors. J. Phys. Chem. C 119, 10161–10177 (2015)

    Article  Google Scholar 

  36. Even, J., Pedesseau, L., Jancu, J.-M., Katan, C.: J. Phys. Chem. Lett. 4, 2999–3005 (2013)

    Article  Google Scholar 

  37. Neamen, D.A.: Semiconductor Physics and Devices, 4th edn. McGraw-Hill, New York (2012)

    Google Scholar 

  38. Giorgi, G., Fujisawa, J.I., Segawa, H., Yamashita, K.: Small photocarrier effective masses featuring ambipolar transport in methylammonium lead iodide perovskite: a density functional analysis. J. Phys. Chem. Lett. 4, 4213–4216 (2013)

    Article  Google Scholar 

  39. Galkowski, K., Mitioglu, A., Miyata, A., Plochocka, P., Portugall, O., Eperon, G.E., Wang, J.T.W., Stergiopoulos, T., Stranks, S.D., Snaith, H.J., Nichola, R.J.: Determination of the exciton binding energy and effective masses for methylammonium and formamidinium lead tri-halide perovskite semiconductors. Energy Environ. Sci. (2016). doi:10.1039/c5ee03435c

    Google Scholar 

  40. Green, M.A., Ho-Baillie, A., Snaith, H.J.: The emergence of perovskite solar cells. Nat. Photonics 8, 506–514 (2014)

    Article  Google Scholar 

  41. Li, C., Lu, X., Ding, W., Feng, L., Gao, Y., Guo, Z.: Formability of ABX3 (X = F, Cl, Br, I) halide perovskites. Acta Crystallogr. B 64, 702–707 (2008)

    Article  Google Scholar 

  42. Yin, W.J., Shi, T., Yan, Y.: Unique properties of halide perovskites as possible origins of the superior solar cell performance. Adv. Mater. 26, 4653–4658 (2014)

    Article  Google Scholar 

  43. Im, J.H., Chung, J., Kim, S.J., Park, N.G.: Synthesis, structure, and photovoltaic property of a nanocrystalline 2H perovskite-type novel sensitizer (CH3CH2NH3)PbI3. Nanoscale Res. Lett. 7, 353 (2012)

    Article  Google Scholar 

  44. Kim, H.S., Mora-Sero, I., Gonzalez-Pedro, V., Fabregat-Santiago, F., Juarez-Perez, E.J., Park, N.G., Bisquert, J.: Mechanism of carrier accumulation in perovskite thin-absorber solar cells. Nat. Commun. 4, 2242 (2013)

    Google Scholar 

  45. Bisquert, J.: Chemical capacitance of nanostructured semiconductors: its origin and significance for nanocomposite solar cells. Phys. Chem. Chem. Phys. 5, 5360–5364 (2003)

    Article  Google Scholar 

  46. Im, J.H., Jang, I.H., Pellet, N., Grätzel, M., Park, N.G.: Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nat. Nanotechnol. 9, 927–932 (2014)

    Article  Google Scholar 

  47. Ahn, N., Kang, S.M., Lee, J.W., Choi, M., Park, N.G.: Thermodynamic regulation of CH3NH3PbI3 crystal growth and its effect on photovoltaic performance of perovskite solar cells. J. Mater. Chem. A 3, 19901–19906 (2015)

    Article  Google Scholar 

  48. Mastroianni, S., Heinz, F.D., Im, J.H., Veurman, W., Padilla, M., Schubert, M.C., Würfel, U., Grätzel, M., Park, N.G., Hinsch, A.: Analysing the effect of crystal size and structure in highly efficient CH3NH3PbI3 perovskite solar cells by spatially resolved photo- and electroluminescence imaging. Nanoscale 7, 19653–19662 (2015)

    Article  Google Scholar 

  49. Ahn, N., Son, D.Y., Jang, I.H., Kang, S.M., Choi, M., Park, N.G.: Highly reproducible perovskite solar cells with average efficiency of 18.3 % and best efficiency of 19.7 % fabricated via Lewis base adduct of lead (II) iodide. J. Am. Chem. Soc. 137, 8696–8699 (2015)

    Article  Google Scholar 

  50. Chen, Y., Peng, J., Su, D., Chen, X., Liang, Z.: Efficient and balanced charge transport revealed in planar perovskite solar cells. ACS Appl. Mater. Interfaces 7, 4471–4475 (2015)

    Article  Google Scholar 

  51. Stoumpos, C.C., Malliakas, C.D., Kanatzidis, M.G.: Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019–9038 (2013)

    Article  Google Scholar 

  52. Wang, F., Yu, H., Xu, H., Zhao, N.: HPbI3: a new precursor compound for highly efficient solution-processed perovskite solar cells. Adv. Funct. Mater. 25, 1120–1126 (2015)

    Article  Google Scholar 

  53. Seol, D.J., Lee, J.W., Park, N.G.: On the role of interfaces in planar-structured HC(NH2)2PbI3 perovskite solar cells. ChemSusChem 8, 2414–2419 (2015)

    Article  Google Scholar 

  54. Lee, J.W., Kim, H.S., Park, N.G.: Lewis acid-base adduct approach for high efficiency perovskite solar cells. Acc. Chem. Res. 49, 311–319 (2016)

    Article  Google Scholar 

  55. Dimesso, L., Quintilla, A., Kim, Y.M., Lemmer, U., Jaegermann, W.: Investigation of formamidinium and guanidinium lead tri-iodide powders as precursors for solar cells. Mater. Sci. Eng. B 204, 27–33 (2016)

    Article  Google Scholar 

  56. Lee, J.W., Lee, S.H., Ko, H.S., Kwon, J.K., Park, J.H., Kang, S.M., Ahn, N., Choi, M., Kim, J.K., Park, N.G.: Opto-electronic properties of TiO2 nanohelices with embedded HC(NH2)2PbI3 perovskite solar cells. J. Mater. Chem. A 3, 9179–9186 (2015)

    Article  Google Scholar 

  57. Yang, W.S., Noh, J.H., Jeon, N.J., Kim, Y.C., Ryu, S., Seo, H., Seok, S.I.: High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348, 1234–1237 (2015)

    Article  Google Scholar 

  58. Bi, D., Tress, W., Dar, M.I., Gao, P., Luo, J., Renevier, C., Schenk, K., Abate, A., Giordano, F., Baena, J.P.C., Decoppet, J.D., Zakeeruddin, S.M., Nazeeruddin, M.K., Grätzel, M., Hagfeldt, A.: Efficient luminescent solar cells based on tailored mixed-cation perovskites. Sci. Adv. 2, 1–7 (2016)

    Article  Google Scholar 

  59. Christians, J.M., Herrera, P.A.M., Kamat, P.V.: Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air. J. Am. Chem. Soc. 137, 1530–1538 (2015)

    Article  Google Scholar 

  60. Aristidou, N., Sanchez-Molina, I., Chotchuangchutchaval, T., Brown, M., Martinez, L., Rath, T., Haque, S.A.: The role of oxygen in the degradation of methylammonium lead trihalide perovskite photoactive layers. Angew. Chem. Int. Ed. 54, 8208–8212 (2015)

    Article  Google Scholar 

  61. Gottesman, R., Gouda, L., Kalanoor, B.S., Haltzi, E., Tirosh, S., Rosh-Hodesh, E., Tischler, Y., Zaban, A.: Photoinduced reversible structural transformations in free-standing CH3NH3PbI3 perovskite films. J. Phys. Chem. Lett. 6, 2332–2338 (2015)

    Article  Google Scholar 

  62. Binek, A., Hanusch, F.C., Docampo, P., Bein, T.: Stabilization of the trigonal high-temperature phase of formamidinium lead iodide. J. Phys. Chem. Lett. 6, 1249–1253 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grants funded by the Ministry of Science, ICT & Future Planning (MSIP) of Korea under contracts No. NRF-2012M3A6A7054861 (Global Frontier R&D Program on Center for Multiscale Energy System), NRF-2015M1A2A2053004 (Climate Change Management Program), and NRF-2012M3A7B4049986 (Nano Material Technology Development Program).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nam-Gyu Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lee, JW., Kim, HS., Park, NG. (2016). APbI3 (A = CH3NH3 and HC(NH2)2) Perovskite Solar Cells: From Sensitization to Planar Heterojunction. In: Park, NG., Grätzel, M., Miyasaka, T. (eds) Organic-Inorganic Halide Perovskite Photovoltaics. Springer, Cham. https://doi.org/10.1007/978-3-319-35114-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-35114-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-35112-4

  • Online ISBN: 978-3-319-35114-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics