Skip to main content

Ionic Conductivity of Organic–Inorganic Perovskites: Relevance for Long-Time and Low Frequency Behavior

  • Chapter
  • First Online:

Abstract

This chapter is focused on the relevance of the ionic transport in hybrid organic–inorganic perovskites. The occurrence of significant ionic conductivity along with electronic conductivity leads to stoichiometric polarization on current flow. Such a polarization yields a large apparent dielectric constant at low frequencies and a pronounced hysteresis behavior in i-V sweep experiments. We describe electrochemical background, precise measurements, and the impact of these phenomena for the photo-perovskites.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T.: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009). doi:10.1021/ja809598r

    Article  Google Scholar 

  2. Kim, H.S., Lee, C.R., Im, J.H., Lee, K.B., Moehl, T., Marchioro, A., Moon, S.J., Humphry-Baker, R., Yum, J.H., Moser, J.E., Grätzel, M., Park, N.G.: Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9 %. Sci. Rep. 2, 591 (2012). doi:10.1038/srep00591

    Google Scholar 

  3. Burschka, J., Pellet, N., Moon, S.-J., Humphry-Baker, R., Gao, P., Nazeeruddin, M.K., Gratzel, M.: Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499(7458), 316–319 (2013). doi:10.1038/nature12340

    Article  Google Scholar 

  4. Chen, Q., Zhou, H., Hong, Z., Luo, S., Duan, H.-S., Wang, H.-H., Liu, Y., Li, G., Yang, Y.: Planar heterojunction perovskite solar cells via vapor assisted solution process. J. Am. Chem. Soc. 136(2), 622–625 (2013). doi:10.1021/ja411509g

    Article  Google Scholar 

  5. Jeon, N.J., Noh, J.H., Kim, Y.C., Yang, W.S., Ryu, S., Seok, S.I.: Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 13(9), 897–903 (2014). doi:10.1038/nmat4014

    Article  Google Scholar 

  6. Liu, M., Johnston, M.B., Snaith, H.J.: Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501(7467), 395–398 (2013). doi:10.1038/nature12509

    Article  Google Scholar 

  7. Lee, M.M., Teuscher, J., Miyasaka, T.: Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 643 (2012). doi:10.1126/science.1228604

    Google Scholar 

  8. Pellet, N., Gao, P., Gregori, G., Yang, T.-Y., Nazeeruddin, M.K., Maier, J., Grätzel, M.: Mixed-Organic-Cation perovskite photovoltaics for enhanced solar-light harvesting. Angew. Chem. Int. Ed. 53(12), 3151–3157 (2014). doi:10.1002/anie.201309361

    Article  Google Scholar 

  9. Yang, T.-Y., Gregori, G., Pellet, N., Grätzel, M., Maier, J.: The Significance of ion conduction in a hybrid organic-inorganic lead-iodide-based perovskite photosensitizer. Angew. Chem. Int. Ed. 54(27), 7905–7910 (2015). doi:10.1002/anie.201500014

    Article  Google Scholar 

  10. Juarez-Perez, E.J., Sanchez, R.S., Badia, L., Garcia-Belmonte, G., Kang, Y.S., Mora-Sero, I., Bisquert, J.: Photoinduced giant dielectric constant in lead halide perovskite solar cells. J. Phys. Chem. Lett. 5(13), 2390–2394 (2014). doi:10.1021/jz5011169

    Article  Google Scholar 

  11. Sanchez, R.S., Gonzalez-Pedro, V., Lee, J.-W., Park, N.-G., Kang, Y.S., Mora-Sero, I., Bisquert, J.: Slow dynamic processes in lead halide perovskite solar cells. characteristic times and hysteresis. J. Phys. Chem. Lett. 5(13), 2357–2363 (2014). doi:10.1021/jz5011187

    Article  Google Scholar 

  12. Reenen, S.V., Kemerink, M., Snaith, H.J.: Modeling anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 6, 3808–3814 (2015). doi:10.1021/acs.jpclett.5b01645

    Article  Google Scholar 

  13. Snaith, H.J., Abate, A., Ball, J.M., Eperon, G.E., Leijtens, T., Noel, N.K., Stranks, S.D., Wang, J.T.W., Wojciechowski, K., Zhang, W.: Anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 5(9), 1511–1515 (2014). doi:10.1021/jz500113x

    Article  Google Scholar 

  14. Unger, E.L., Hoke, E.T., Bailie, C.D., Nguyen, W.H., Bowring, A.R., Heumuller, T., Christoforo, M.G., McGehee, M.D.: Hysteresis and transient behavior in current-voltage measurements of hybrid-perovskite absorber solar cells. Energy Environ. Sci. 7, 3690–3698 (2014). doi:10.1039/C4EE02465F

    Article  Google Scholar 

  15. Zhang, Y., Liu, M., Eperon, G.E., Leijtens, T.C., McMeekin, D., Saliba, M., Zhang, W., de Bastiani, M., Petrozza, A., Herz, L.M., Johnston, M.B., Lin, H., Snaith, H.J.: Charge selective contacts, mobile ions and anomalous hysteresis in organic–inorganic perovskite solar cells. Mater. Horiz. 2, 315–322 (2015). doi:10.1039/C4MH00238E

    Article  Google Scholar 

  16. Hebb, M.H.: Electrical conductivity of silver sulfide. J. Chem. Phys. 20(1), 185–190 (1952). doi:10.1063/1.1700165

    Article  Google Scholar 

  17. Frost, J.M., Butler, K.T., Brivio, F., Hendon, C.H., van Schilfgaarde, M., Walsh, A.: Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett. 14(5), 2584–2590 (2014). doi:10.1021/nl500390f

    Article  Google Scholar 

  18. Stoumpos, C.C., Malliakas, C.D., Kanatzidis, M.G.: Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52(15), 9019–9038 (2013). doi:10.1021/ic401215x

    Article  Google Scholar 

  19. Onoda-Yamamuro, N., Matsuo, T., Suga, H.: Dielectric study of CH3NH3PbX3 (X = Cl, Br, I). J. Phys. Chem. Solids 53(7), 935–939 (1992). doi:10.1016/0022-3697(92)90121-S

    Article  Google Scholar 

  20. Poglitsch, A., Weber, D.: Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter-wave spectroscopy. J. Chem. Phys. 87(11), 6373–6378 (1987). doi:10.1063/1.453467

    Article  Google Scholar 

  21. Wasylishen, R.E., Knop, O., Macdonald, J.B.: Cation rotation in methylammonium lead halides. Solid State Commun. 56(7), 581–582 (1985). doi:10.1016/0038-1098(85)90959-7

    Article  Google Scholar 

  22. Shao, Y., Xiao, Z., Bi, C., Yuan, Y., Huang, J.: Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat. Commun. 5, 5784 (2014). doi:10.1038/ncomms6784

    Article  Google Scholar 

  23. Xiao, Z., Bi, C., Shao, Y., Dong, Q., Wang, Q., Yuan, Y., Wang, C., Gao, Y., Huang, J.: Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers. Energy Environ. Sci. 7(8), 2619–2623 (2014). doi:10.1039/C4EE01138D

    Article  Google Scholar 

  24. You, J., Yang, Y., Hong, Z., Song, T.-B., Meng, L., Liu, Y., Jiang, C., Zhou, H., Chang, W.-H., Li, G., Yang, Y.: Moisture assisted perovskite film growth for high performance solar cells. Appl. Phys. Lett. 105(18), 183902 (2014). doi:10.1063/1.4901510

    Article  Google Scholar 

  25. Xu, J., Buin, A., Ip, A.H., Li, W., Voznyy, O., Comin, R., Yuan, M., Jeon, S., Ning, Z., McDowell, J.J., Kanjanaboos, P., Sun, J.-P., Lan, X., Quan, L.N., Kim, D.H., Hill, I.G., Maksymovych, P., Sargent, E.H.: Perovskite-fullerene hybrid materials suppress hysteresis in planar diodes. Nat. Communi. 6 (2015). doi:10.1038/ncomms8081

  26. Nie, W., Tsai, H., Asadpour, R., Blancon, J.C., Neukirch, A.J., Gupta, G., Crochet, J.J., Chhowalla, M., Tretiak, S., Alam, M.A., Wang, H.L., Mohite, A.D.: High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 347(6221), 522–525 (2015). doi:10.1126/science.aaa0472

    Article  Google Scholar 

  27. Yamada, K., Isobe, K., Okuda, T., Furukawa, Y.: Successive Phase Transitions and High Ionic Conductivity of Trichlorogermanate(II) Salts as Studied by 35Cl NQR and Powder X-Ray Diffraction. Z. Naturforsch. A J. Phys. Sci. 49(1–2), 258–266 (1994). doi:10.1515/zna-1994-1-238

    Google Scholar 

  28. Yamada, K., Isobe, K., Tsuyama, E., Okuda, T., Furukawa, Y.: Chloride ion conductor CH3NH3GeCl3 studied by Rietveld analysis of X-ray diffraction and 35Cl NMR. Solid State Ionics 79, 152–157 (1995). doi:10.1016/0167-2738(95)00055-B

    Article  Google Scholar 

  29. Yamada, K., Kuranaga, Y., Ueda, K., Goto, S.: Phase transition and electric conductivity of ASnCl3 (A = Cs and CH3NH3). Bull. Chem. Soc. Japan 71, 127-127 (1998). doi:10.1246/bcsj.71.127

    Google Scholar 

  30. Yamada, K., Matsui, T., Tsuritani, T., Okuda, T., Ichiba, S.: 127I-NQR, 119 Sn Mössbauer effect, and electrical conductivity of MSnI3 (M = K, NH4, Rb, Cs, and CH3NH3). Z. Naturforsch. A 45(3–4), 307–312 (1990). doi:10.1515/zna-1990-3-416

    Google Scholar 

  31. Mizusaki, J., Arai, K., Fueki, K.: Ionic conduction of the perovskite-type halides. Solid State Ionics 11, 203–211 (1983). doi:10.1016/0167-2738(83)90025-5

    Article  Google Scholar 

  32. Hoshino, H., Yamazaki, M., Nakamura, Y., Shimoji, M.: Ionic conductivity of lead chloride crystals. J. Phys. Soc. Jpn. 26(6), 1422–1426 (1969). doi:10.1143/JPSJ.26.1422

    Article  Google Scholar 

  33. Hoshino, H., Yokose, S., Shimoji, M.: Ionic conductivity of lead bromide crystals. J. Solid State Chem. 7(1), 1–6 (1973). doi:10.1016/0022-4596(73)90113-8

    Article  Google Scholar 

  34. Dualeh, A., Moehl, T., Tétreault, N., Teuscher, J., Gao, P., Nazeeruddin, M.K., Grätzel, M.: Impedance spectroscopic analysis of lead iodide perovskite-sensitized solid-state solar cells. ACS Nano 8(1), 362–373 (2013). doi:10.1021/nn404323g

    Article  Google Scholar 

  35. Xiao, Z., Yuan, Y., Shao, Y., Wang, Q., Dong, Q., Bi, C., Sharma, P., Gruverman, A., Huang, J.: Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nat. Mater. 14, 193–198 (2014). doi:10.1038/nmat4150

    Article  Google Scholar 

  36. Zhao, Y., Liang, C., Zhang, H.M., Li, D., Tian, D., Li, G., Jing, X., Zhang, W., Xiao, W., Liu, Q., Zhang, F., He, Z.: Anomalously large interface charge in polarity-switchable photovoltaic devices: an indication of mobile ions in organic-inorganic halide perovskites. Energy Environ. Sci. 8, 1256–1260 (2015). doi:10.1039/C4EE04064C

    Article  Google Scholar 

  37. Chen, B., Yang, M., Zheng, X., Wu, C., Li, W., Yan, Y., Bisquert, J., Garcia-Belmonte, G., Zhu, K., Priya, S.: Impact of capacitive effect and ion migration on the hysteretic behavior of perovskite solar cells. J. Phys. Chem. Lett. 6(23), 4693–4700 (2015). doi:10.1021/acs.jpclett.5b02229

    Article  Google Scholar 

  38. Yuan, Y., Chae, J., Shao, Y., Wang, Q., Xiao, Z., Centrone, A., Huang, J.: Photovoltaic switching mechanism in lateral structure hybrid perovskite solar cells. Adv. Energy Mater. (JUNE), n/a-n/a (2015). doi:10.1002/aenm.201500615

    Google Scholar 

  39. Leijtens, T., Hoke, E.T., Grancini, G., Slotcavage, D.J., Eperon, G.E., Ball, J.M., De Bastiani, M., Bowring, A.R., Martino, N., Wojciechowski, K., McGehee, M.D., Snaith, H.J., Petrozza, A.: Mapping electric field-induced switchable poling and structural degradation in hybrid lead halide perovskite thin films. Adv. Energy Mater. 5, 1500962 (2015). doi:10.1002/aenm.201500962

    Article  Google Scholar 

  40. Bag, M., Renna, L.a., Adhikari, R., Karak, S., Liu, F., Lahti, P.M., Russell, T.P., Tuominen, M.T., Venkataraman, D.: Kinetics of ion transport in perovskite active layers and its implications for active layer stability. J. Am. Chem. Soc. 137(40), 13130–13137 (2015). doi:10.1021/jacs.5b08535

    Article  Google Scholar 

  41. Yin, W.-J., Shi, T., Yan, Y.: Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 104(6), 063903 (2014). doi:10.1063/1.4864778

    Article  Google Scholar 

  42. Buin, A., Pietsch, P., Voznyy, O., Comin, R.: Materials processing routes to trap-free halide perovskites. Nano Lett. 14(11), 6281–6286 (2014). doi:10.1021/nl502612m

    Article  Google Scholar 

  43. Agiorgousis, M.L., Sun, Y.-Y., Zeng, H., Zhang, S.: Strong Covalency-induced recombination centers in perovskite solar cell material CH3NH3PbI3. J. Am. Chem. Soc. 136(41), 14570–14575 (2014). doi:10.1021/ja5079305

    Article  Google Scholar 

  44. Walsh, A., Scanlon, D.O., Chen, S., Gong, X.G., Wei, S.-H.: Self-Regulation mechanism for charged point defects in hybrid halide perovskites. Angew. Chem. Int. Ed. 54(6), 1791–1794 (2015). doi:10.1002/anie.201409740

    Article  Google Scholar 

  45. Kim, J., Lee, S.-H., Lee, J.H., Hong, K.-H.: The role of intrinsic defects in methylammonium lead iodide perovskite. J. Phys. Chem. Lett. 5(8), 1312–1317 (2014). doi:10.1021/jz500370k

    Article  Google Scholar 

  46. Eames, C., Frost, J.M., Barnes, P.R.F., Oregan, B.C., Walsh, A., Islam, M.S.: Ionic transport in hybrid lead iodide perovskite solar cells. Nat Commun. 6 (2015). doi:10.1038/ncomms8497

  47. Haruyama, J., Sodeyama, K., Han, L., Tateyama, Y.: First-principles study of ion diffusion in perovskite solar cell sensitizers. J. Am. Chem. Soc. 137, 10048–10051 (2015). doi:10.1021/jacs.5b03615

    Article  Google Scholar 

  48. Azpiroz, J.M., Mosconi, E., Bisquert, J., De Angelis, F.: Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation. Energy Environ. Sci. 8(7), 2118–2127 (2015). doi:10.1039/C5EE01265A

    Article  Google Scholar 

  49. Yokota, I.: On the electrical conductivity of cuprous sulfide: a diffusion theory. J. Phys. Soc. Jpn. 8(5), 595–602 (1953). doi:10.1143/JPSJ.8.595

    Article  Google Scholar 

  50. Yokota, I.: On the theory of mixed conduction with special reference to conduction in silver sulfide group semiconductors. J. Phys. Soc. Jpn. 16(11), 2213–2223 (1961). doi:10.1143/JPSJ.16.2213

    Article  Google Scholar 

  51. Maier, J.: Solid state electrochemistry ii: devices and techniques. In: Vayenas, C., White, R.E., Gambpa-Aldeco, M.E. (eds.) Modern aspects of electrochemistry, vol. 41. pp. 1−128. Springer, New York (2007)

    Google Scholar 

  52. Maier, J.: Evaluation of electrochemical methods in solid state research and their generalization for defects with variable charges. Z. Phys. Chem. Neue Fol. 140, 191–215 (1984). doi:10.1524/zpch.1984.140.2.191

    Article  Google Scholar 

  53. Jamnik, J., Maier, J., Pejovnik, S.: A powerful electrical network model for the impedance of mixed conductors. Electrochim. Acta 44(24), 4139–4145 (1999). doi:10.1016/S0013-4686(99)00128-0

    Article  Google Scholar 

  54. Jamnik, J., Maier, J.: Generalised equivalent circuits for mass and charge transport: chemical capacitance and its implications. Phys. Chem. Chem. Phys. 3(9), 1668–1678 (2001). doi:10.1039/B100180I

    Article  Google Scholar 

  55. Brivio, F., Walker, A.B., Walsh, A.: Structural and electronic properties of hybrid perovskites for high-efficiency thin-film photovoltaics from first-principles. APL Mater. 1(4), 042111 (2013). doi:10.1063/1.4824147

    Article  Google Scholar 

  56. Knop, O., Wasylishen, R.E., White, M.A., Cameron, T.S.: Oort, M.J.v.: Alkylammonium lead halides. Part 2. CH3NH3PbX3 (X = Cl, Br, I) perovskites: cuboctahedral halide cages with isotropic cation reorientation. Can. J. Chem. 68(3), 412–422 (1990). doi:10.1139/v90-063

    Article  Google Scholar 

  57. Maier, J.: Physical chemistry of ionic materials. WILEY, Chichester (2004)

    Book  Google Scholar 

  58. Mitzi, D.B.: Templating and structural engineering in organic-inorganic perovskites. J. Chem. Soc. Dalton Trans. (1), 1−12 (2001). doi:10.1039/B007070J

  59. Du, M.H.: Efficient carrier transport in halide perovskites: theoretical perspectives. J. Mater. Chem. A 2(24), 9091–9098 (2014). doi:10.1039/C4TA01198H

    Article  Google Scholar 

  60. Duan, H.S., Zhou, H., Chen, Q., Sun, P., Luo, S., Song, T.B., Bob, B., Yang, Y.: The identification and characterization of defect states in hybrid organic-inorganic perovskite photovoltaics. Phys. Chem. Chem. Phys. 17(1), 112–116 (2015). doi:10.1039/c4cp04479g

    Article  Google Scholar 

  61. Samiee, M., Konduri, S., Ganapathy, B., Kottokkaran, R., Abbas, H.A., Kitahara, A., Joshi, P., Zhang, L., Noack, M., Dalal, V.: Defect density and dielectric constant in perovskite solar cells. Appl. Phys. Lett. 105(15), 153502 (2014). doi:10.1063/1.4897329

    Article  Google Scholar 

  62. Maier, J.: Mass transport in the presence of internal defect reactions—concept of conservative ensembles: i, chemical diffusion in pure compounds. J. Am. Ceram. Soc. 76(5), 1212–1217 (1993). doi:10.1111/j.1151-2916.1993.tb03743.x

    Article  Google Scholar 

  63. Maier, J., Amin, R.: Defect chemistry of LiFePO4. J. Electrochem. Soc. 155(4), A339–A344 (2008). doi:10.1149/1.2839626

    Article  Google Scholar 

  64. Maier, J.: Electrochemical investigation methods of ionic transport properties in solids. Solid State Phenom. 39(40), 35–60 (1994). doi:10.4028/www.scientific.net/SSP.39-40.35

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Maier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gregori, G., Yang, TY., Senocrate, A., Grätzel, M., Maier, J. (2016). Ionic Conductivity of Organic–Inorganic Perovskites: Relevance for Long-Time and Low Frequency Behavior. In: Park, NG., Grätzel, M., Miyasaka, T. (eds) Organic-Inorganic Halide Perovskite Photovoltaics. Springer, Cham. https://doi.org/10.1007/978-3-319-35114-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-35114-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-35112-4

  • Online ISBN: 978-3-319-35114-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics