Skip to main content

Maximum Efficiency and Open-Circuit Voltage of Perovskite Solar Cells

  • Chapter
  • First Online:
Organic-Inorganic Halide Perovskite Photovoltaics

Abstract

This chapter serves as an introduction to the general working principles of solar cells. It starts from the thermodynamics of terrestrial solar cells and fundamentals of semiconductor-based photovoltaics, where the theoretical limits of efficiency and open-circuit voltage as a function of the bandgap are discussed. The chapter describes the prediction of the open-circuit voltage when the photovoltaic action spectra and the electroluminescence quantum efficiency are known. The role of subgap states and several sources of nonradiative recombination, including interfaces to the charge-transport layers, are investigated at open-circuit voltage and fill factor of state-of-the-art perovskite solar cells. Based on these factors, organic–inorganic perovskite solar cells with different architectures and compositions are compared with other solar cell technologies. Low disorder and weak nonradiative recombination are shown to be responsible for the superior performance of mixed cation mixed halide perovskite solar cells, allowing for open-circuit voltages of 1.2 V to be achieved at a bandgap of 1.6 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wurfel, P.: Physics of Solar Cells: From Basic Principles to Advanced Concepts. (Wiley)

    Google Scholar 

  2. Tress, W.: Organic Solar Cells—Theory, Experiment, and Device Simulation

    Google Scholar 

  3. Trupke, T., Daub, E., Würfel, P.: Absorptivity of silicon solar cells obtained from luminescence. Sol. Energy Mater. Sol. Cells 53, 103–114 (1998)

    Article  Google Scholar 

  4. Rau, U.: Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells. Phys. Rev. B 76, 085303 (2007)

    Article  Google Scholar 

  5. Giorgi, G., Fujisawa, J.-I., Segawa, H., Yamashita, K.: Small photocarrier effective masses featuring ambipolar transport in methylammonium lead iodide perovskite: a density functional analysis. J. Phys. Chem. Lett. 4, 4213–4216 (2013)

    Article  Google Scholar 

  6. Tress, W., et al.: Predicting the open-circuit voltage of CH3NH3PbI3 perovskite solar cells using electroluminescence and photovoltaic quantum efficiency spectra: the role of radiative and non-radiative recombination. Adv. Energy Mater. 5, 140812 (2015)

    Article  Google Scholar 

  7. Tvingstedt, K., et al.: Radiative efficiency of lead iodide based perovskite solar cells. Sci. Rep. 4, 6071 (2014)

    Article  Google Scholar 

  8. Ball, J.M., et al.: Optical properties and limiting photocurrent of thin-film perovskite solar cells. Energy Environ. Sci. 8, 602–609 (2015)

    Article  Google Scholar 

  9. Bi, D., et al.: Efficient luminescent solar cells based on tailored mixed-cation perovskites. Sci. Adv. 2, e1501170 (2016)

    Article  Google Scholar 

  10. Shockley, W., Queisser, H.J.: Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510–519 (2004)

    Article  Google Scholar 

  11. Green, M.A., Emery, K., Hishikawa, Y., Warta, W., Dunlop, E.D.: Solar cell efficiency tables (version 46). Prog. Photovolt. Res. Appl. 23, 805–812 (2015)

    Article  Google Scholar 

  12. De Wolf, S., et al.: Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett. 5, 1035–1039 (2014)

    Article  Google Scholar 

  13. D’Innocenzo, V., Srimath Kandada, A.R., De Bastiani, M., Gandini, M., Petrozza, A.: Tuning the light emission properties by band gap engineering in hybrid lead halide perovskite. J. Am. Chem. Soc. 136, 17730–17733 (2014)

    Google Scholar 

  14. Stoumpos, C.C., Malliakas, C.D., Kanatzidis, M.G.: Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019–9038 (2013)

    Article  Google Scholar 

  15. Pang, S., et al.: NH2CH═NH2PbI3: an alternative organolead iodide perovskite sensitizer for mesoscopic solar cells. Chem. Mater. 26, 1485–1491 (2014)

    Article  Google Scholar 

  16. Pellet, N., et al.: Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting. Angew. Chem. Int. Ed. 53, 3151–3157 (2014)

    Article  Google Scholar 

  17. Eperon, G.E., et al.: Formamidinium lead trihalide: a broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7, 982–988 (2014)

    Article  Google Scholar 

  18. Filip, M.R., Eperon, G.E., Snaith, H.J. Giustino, F.: Steric engineering of metal-halide perovskites with tunable optical band gaps. Nat. Commun. 5, (2014)

    Google Scholar 

  19. Amat, A., et al.: Cation-induced band-gap tuning in organohalide perovskites: interplay of spin-orbit coupling and octahedra tilting. Nano Lett. 14, 3608–3616 (2014)

    Article  Google Scholar 

  20. Umebayashi, T., Asai, K., Kondo, T., Nakao, A.: Electronic structures of lead iodide based low-dimensional crystals. Phys. Rev. B 67, 155405 (2003)

    Article  Google Scholar 

  21. Noh, J.H., Im, S.H., Heo, J.H., Mandal, T.N., Seok, S.I.: Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett. 13, 1764–1769 (2013)

    Article  Google Scholar 

  22. McMeekin, D.P., et al.: A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351, 151–155 (2016)

    Article  Google Scholar 

  23. Henry, C.H.: Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells. J. Appl. Phys. 51, 4494–4500 (1980)

    Article  Google Scholar 

  24. Albrecht, S., et al.: Monolithic perovskite/silicon-heterojunction tandem solar cells processed at low temperature. Energy Environ. Sci. (2015). doi:10.1039/C5EE02965A

    Google Scholar 

  25. Werner, J., et al.: Efficient monolithic perovskite/silicon tandem solar cell with cell area >1 cm2. J. Phys. Chem. Lett. 7, 161–166 (2016)

    Article  Google Scholar 

  26. Mailoa, J.P., et al.: A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction. Appl. Phys. Lett. 106, 121105 (2015)

    Article  Google Scholar 

  27. Löper, P., et al.: Organic–inorganic halide perovskite/crystalline silicon four-terminal tandem solar cells. Phys. Chem. Chem. Phys. 17, 1619–1629 (2014)

    Article  Google Scholar 

  28. Filipič, M., et al.: CH_3NH_3PbI_3 perovskite/silicon tandem solar cells: characterization based optical simulations. Opt. Express 23, A263 (2015)

    Article  Google Scholar 

  29. Smestad, G., Ries, H.: Luminescence and current-voltage characteristics of solar cells and optoelectronic devices. Sol. Energy Mater. Sol. Cells 25, 51–71 (1992)

    Article  Google Scholar 

  30. Burschka, J., et al.: Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013)

    Article  Google Scholar 

  31. Yao, J., et al.: Quantifying losses in open-circuit voltage in solution-processable solar cells. Phys. Rev. Appl. 4, 014020 (2015)

    Article  Google Scholar 

  32. Tiedje, T., Yablonovitch, E., Cody, G.D., Brooks, B.G.: Limiting efficiency of silicon solar cells. IEEE Trans. Electron Devices 31, 711–716 (1984)

    Article  Google Scholar 

  33. Kerr, M.J., Cuevas, A., Campbell, P.: Limiting efficiency of crystalline silicon solar cells due to Coulomb-enhanced Auger recombination. Prog. Photovolt. Res. Appl. 11, 97–104 (2003)

    Article  Google Scholar 

  34. Kim, J., Lee, S.-H., Lee, J.H., Hong, K.-H.: The Role of Intrinsic Defects in Methylammonium Lead Iodide Perovskite. J. Phys. Chem. Lett. 1312–1317 (2014). doi:10.1021/jz500370k

    Google Scholar 

  35. Yin, W.-J., Shi, T., Yan, Y.: Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 104, 063903 (2014)

    Article  Google Scholar 

  36. Buin, A., et al.: Materials processing routes to trap-free halide perovskites. Nano Lett. 14, 6281–6286 (2014)

    Article  Google Scholar 

  37. Agiorgousis, M.L., Sun, Y.-Y., Zeng, H., Zhang, S.: Strong Covalency-Induced Recombination Centers in Perovskite Solar Cell Material CH3NH3PbI3. J. Am. Chem. Soc. 136, 14570–14575 (2014)

    Article  Google Scholar 

  38. Shockley, W., Read, W.T.: Statistics of the recombinations of holes and electrons. Phys. Rev. 87, 835–842 (1952)

    Article  MATH  Google Scholar 

  39. Wehrenfennig, C., Eperon, G.E., Johnston, M.B., Snaith, H.J., Herz, L.M.: High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 26, 1584–1589 (2014)

    Article  Google Scholar 

  40. Stranks, S.D., et al.: Recombination kinetics in organic-inorganic perovskites: excitons, free charge, and subgap states. Phys. Rev. Appl. 2, 034007 (2014)

    Article  Google Scholar 

  41. Yamada, Y., Nakamura, T., Endo, M., Wakamiya, A., Kanemitsu, Y.: Photocarrier Recombination Dynamics in Perovskite CH3NH3PbI3 for Solar Cell Applications. J. Am. Chem. Soc. 136, 11610–11613 (2014)

    Article  Google Scholar 

  42. Brandt, R.E., Stevanović, V., Ginley, D.S., Buonassisi, T.: Identifying defect-tolerant semiconductors with high minority-carrier lifetimes: beyond hybrid lead halide perovskites. MRS Commun. 5, 265–275 (2015)

    Article  Google Scholar 

  43. Lin, Q., Armin, A., Nagiri, R.C.R., Burn, P.L., Meredith, P.: Electro-optics of perovskite solar cells. Nat. Photonics (advance online publication), (2014)

    Google Scholar 

  44. Marinova, N., et al.: Light harvesting and charge recombination in CH3NH3PbI3 perovskite solar cells studied by hole transport layer thickness variation. ACS Nano (2015). doi:10.1021/acsnano.5b00447

    Google Scholar 

  45. Giordano, F., et al.: Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells. Nat. Commun. 7, 10379 (2016)

    Article  Google Scholar 

  46. Ponseca, C.S., et al.: Mechanism of charge transfer and recombination dynamics in organo metal halide perovskites and organic electrodes, PCBM, and spiro-OMeTAD: role of dark carriers. J. Am. Chem. Soc. 137, 16043–16048 (2015)

    Article  Google Scholar 

  47. Wu, C.-G., et al.: High efficiency stable inverted perovskite solar cells without current hysteresis. Energy Environ. Sci. 8, 2725–2733 (2015)

    Article  Google Scholar 

  48. Tress, W., Leo, K., Riede, M.: Dominating recombination mechanisms in organic solar cells based on ZnPc and C60. Appl. Phys. Lett. 102, 163901 (2013)

    Article  Google Scholar 

  49. Snaith, H.J., et al.: Anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 5, 1511–1515 (2014)

    Article  Google Scholar 

  50. Tress, W., et al.: Understanding the rate-dependent J-V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field. Energy Environ. Sci. 8, 995–1004 (2015)

    Article  Google Scholar 

  51. Pysch, D., Mette, A., Glunz, S.W.: A review and comparison of different methods to determine the series resistance of solar cells. Sol. Energy Mater. Sol. Cells 91, 1698–1706 (2007)

    Article  Google Scholar 

  52. Schiefer, S., Zimmermann, B., Glunz, S.W., Wurfel, U.: Applicability of the suns-V method on organic solar cells. IEEE J. Photovolt. 4, 271–277 (2014)

    Article  Google Scholar 

  53. Malinkiewicz, O., et al.: Perovskite solar cells employing organic charge-transport layers. Nat. Photonics 8, 128–132 (2014)

    Article  Google Scholar 

  54. Liu, D., Kelly, T.L.: Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat. Photonics 8, 133–138 (2014)

    Article  Google Scholar 

  55. Chen, W., et al.: Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 350, 944–948 (2015)

    Article  Google Scholar 

  56. Baena, J.P.C., et al.: Highly efficient planar perovskite solar cells through band alignment engineering. Energy Environ. Sci. (2015). doi:10.1039/C5EE02608C

    Google Scholar 

  57. Heo, J.H., Song, D.H., Im, S.H.: Planar CH3NH3PbBr3 hybrid solar cells with 10.4 % power conversion efficiency, fabricated by controlled crystallization in the spin-coating process. Adv. Mater. n/a–n/a (2014). doi:10.1002/adma.201403140

    Google Scholar 

  58. Yan, W., et al.: High-performance hybrid perovskite solar cells with open circuit voltage dependence on hole-transporting materials. Nano Energy. doi:10.1016/j.nanoen.2015.07.024

    Google Scholar 

  59. Ryu, S., et al.: Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor. Energy Environ. Sci. (2014). doi:10.1039/C4EE00762J

    Google Scholar 

  60. Liu, J., et al.: A dopant-free hole-transporting material for efficient and stable perovskite solar cells. Energy Environ. Sci. 7, 2963–2967 (2014)

    Article  Google Scholar 

  61. Polander, L.E., et al.: Hole-transport material variation in fully vacuum deposited perovskite solar cells. APL Mater. 2, 081503 (2014)

    Article  Google Scholar 

  62. Di Giacomo, F., et al.: High efficiency CH3NH3PbI(3−x)Clx perovskite solar cells with poly(3-hexylthiophene) hole transport layer. J. Power Sources 251, 152–156 (2014)

    Article  Google Scholar 

  63. Bi, D., Yang, L., Boschloo, G., Hagfeldt, A., Johansson, E.M.J.: Effect of different hole transport materials on recombination in CH3NH3PbI3 perovskite-sensitized mesoscopic solar cells. J. Phys. Chem. Lett. 4, 1532–1536 (2013)

    Article  Google Scholar 

  64. Jeon, N.J., et al.: Efficient inorganic-organic hybrid perovskite solar cells based on pyrene arylamine derivatives as hole-transporting materials. J. Am. Chem. Soc. 135, 19087–19090 (2013)

    Article  Google Scholar 

  65. Zhao, D., et al.: High-efficiency solution-processed planar perovskite solar cells with a polymer hole transport layer. Adv. Energy Mater. 5, n/a–n/a (2015)

    Google Scholar 

  66. Arora, N., Dar, M.I., Hezam, M., Tress, W., Jacopin, G., Moehl, T., Gao, P., Aldwayyan, A.S., Benoit, D., Grätzel, M., Nazeeruddin, M.K.: Photovoltaic and amplified spontaneous emission studies of high-quality formamidinium lead bromide perovskite films. Adv. Func. Mat.

    Google Scholar 

Download references

Acknowledgments

I thank Amita Ummadisingu for carefully reading the text and suggesting improvements regarding language. Marko Stojanovic, Juan Pablo Correa Baena, T. Jesper Jacobsson, Yiming Cao, and Somayyeh Gholipour are acknowledged for commenting on the manuscript. I thank Dongqin Bi for providing I:Br samples, and Clémentine Renevier and Björn Niessen for the collaboration regarding the characterization of those samples. Financial support from SNF-NanoTera (SYNERGY) is kindly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Tress .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tress, W. (2016). Maximum Efficiency and Open-Circuit Voltage of Perovskite Solar Cells. In: Park, NG., Grätzel, M., Miyasaka, T. (eds) Organic-Inorganic Halide Perovskite Photovoltaics. Springer, Cham. https://doi.org/10.1007/978-3-319-35114-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-35114-8_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-35112-4

  • Online ISBN: 978-3-319-35114-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics