Skip to main content

First-Principles Modeling of Organohalide Thin Films and Interfaces

  • Chapter
  • First Online:
Organic-Inorganic Halide Perovskite Photovoltaics

Abstract

Organohalide perovskites have emerged as a class of materials with a unique combination of optoelectronic properties, suitable for a plethora of applications ranging from solar cells to photoelectrochemical tandem cells, to lasing and lighting. Theoretical and computational modeling can deliver an hitherto inaccessible atomistic view of the crucial material properties and heterointerfaces ruling the operational mechanisms in all these devices. Here we present a unified view of recent activity in the computational modeling of interfaces relevant to perovskites solar cells. The performance of the proposed simulation toolbox along with the fundamental modeling strategies are illustrated using selected examples of relevant materials and representative interfaces. In particular, we discuss interfaces between the prototype methylammonium lead iodide perovskite with TiO2 and ZnO semiconductors (acting as electron selective contacts in solar cells), exploring different surface terminations and doping by chloride ions. Also the effect of defects at the interface with TiO2 is analyzed and their impact on solar cell performance is discussed. Finally, the heterogeneous interface between methylammonium lead iodide and water is analyzed, revealing dynamical hints on the perovskite degradation by water.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bisquert, J.: The swift surge of perovskite photovoltaics. J. Phys. Chem. Lett. 4, 2597–2598 (2013)

    Article  Google Scholar 

  2. Salau, A.M.: Fundamental absorption edge in PbI2:KI alloys. Solar Energy Mater. 2, 327–332 (1980)

    Article  Google Scholar 

  3. Gao, P., Gratzel, M., Nazeeruddin, M.K.: Organohalide lead perovskites for photovoltaic applications. Energy Environ. Sci. 7, 2448–2463 (2014)

    Article  Google Scholar 

  4. Kojima, A., Teshima, K., Shirai, Y., Miyasaka, T.: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009)

    Article  Google Scholar 

  5. Im, J.-H., Lee, C.-R., Lee, J.-W., Park, S.-W., Park, N.-G.: 6.5 % efficient perovskite quantum-dot-sensitized solar cell. Nanoscale 3, 4088–4093

    Google Scholar 

  6. Kim, H.-S., Lee, C.-R., Im, J.-H., Lee, K.-B., Moehl, T., Marchioro, A., Moon, S.-J., Humphry-Baker, R., Yum, J.-H., Moser, J.E., Grätzel, M., Park, N.-G.: Lead Iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9 %. Sci. Rep. 2, 591 (2012)

    Google Scholar 

  7. Lee, M.M., Teuscher, J.l., Miyasaka, T., Murakami, T.N., Snaith, H.J.: Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647

    Google Scholar 

  8. Heo, J.H., Im, S.H., Noh, J.H., Mandal, T.N., Lim, C.-S., Chang, J.A., Lee, Y.H., Kim, H.-J., Sarkar, A., NazeeruddinMd, K., Gratzel, M., Seok, S.I.: Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat. Photon. 7, 486–491 (2013)

    Article  Google Scholar 

  9. Burschka, J., Pellet, N., Moon, S.-J., Humphry-Baker, R., Gao, P., Nazeeruddin, M.K., Gratzel, M.: Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013)

    Article  Google Scholar 

  10. Liu, M., Johnston, M.B., Snaith, H.J.: Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013)

    Article  Google Scholar 

  11. Zhou, H., Chen, Q., Li, G., Luo, S., Song, T.-B., Duan, H.-S., Hong, Z., You, J., Liu, Y., Yang, Y.: Interface engineering of highly efficient perovskite solar cells. Science 345, 542–546 (2014)

    Article  Google Scholar 

  12. Green, M.A., Ho-Baillie, A., Snaith, H.J.: The emergence of perovskite solar cells. Nat. Photon. 8, 506–514 (2014)

    Article  Google Scholar 

  13. Quarti, C., Mosconi, E., De Angelis, F.: Interplay of orientational order and electronic structure in methylammonium lead Iodide: implications for solar cell operation. Chem. Mater. 26, 6557–6569 (2014)

    Article  Google Scholar 

  14. Quarti, C., Grancini, G., Mosconi, E., Bruno, P., Ball, J.M., Lee, M.M., Snaith, H.J., Petrozza, A., Angelis, F.D.: The Raman spectrum of the CH3NH3PbI3 hybrid perovskite: interplay of theory and experiment. J. Phys. Chem. Lett. 5, 279–284 (2013)

    Article  Google Scholar 

  15. Mosconi, E., Quarti, C., Ivanovska, T., Ruani, G., De Angelis, F.: Structural and electronic properties of organo-halide lead perovskites: a combined IR-spectroscopy and ab initio molecular dynamics investigation. Phys. Chem. Chem. Phys. 16, 16137–16144 (2014)

    Article  Google Scholar 

  16. Wehrenfennig, C., Eperon, G.E., Johnston, M.B., Snaith, H.J., Herz, L.M.: High charge carrier mobilities and lifetimes in organo lead trihalide perovskites. Adv. Mater. 26, 1584–1589 (2014)

    Article  Google Scholar 

  17. Stranks, S.D., Eperon, G.E., Grancini, G., Menelaou, C., Alcocer, M.J.P., Leijtens, T., Herz, L.M., Petrozza, A., Snaith, H.J.: Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013)

    Article  Google Scholar 

  18. D’Innocenzo, V., Grancini, G., Alcocer, M.J.P., Kandada, A.R.S., Stranks, S.D., Lee, M.M., Lanzani, G., Snaith, H.J., Petrozza, A.: Excitons versus free charges in organo-lead tri-halide perovskites. Nat. Commun. 5, 3586 (2014)

    Google Scholar 

  19. Edri, E., Kirmayer, S., Henning, A., Mukhopadhyay, S., Gartsman, K., Rosenwaks, Y., Hodes, G., Cahen, D.: Why lead methylammonium tri-iodide perovskite-based solar cells require a mesoporous electron transporting scaffold (but not necessarily a hole conductor). Nano Lett. 14, 1000–1004 (2014)

    Article  Google Scholar 

  20. Edri, E., Kirmayer, S., Mukhopadhyay, S., Gartsman, K., Hodes, G., Cahen, D.: Elucidating the charge carrier separation and working mechanism of CH3NH3PbI3–xClx perovskite solar cells. Nat. Commun. 5, 3461 (2014)

    Article  Google Scholar 

  21. Lv, H., Gao, H., Yang, Y., Liu, L.: Density functional theory (DFT) investigation on the structure and electronic properties of the cubic perovskite PbTiO3. App. Catal. A 404, 54–58 (2011)

    Google Scholar 

  22. Borriello, I., Cantele, G., Ninno, D.: Ab initio investigation of hybrid organic-inorganic perovskites based on tin halides. Phys. Rev. B 77, 235214 (2008)

    Article  Google Scholar 

  23. Castelli, I.E., Olsen, T., Datta, S., Landis, D.D., Dahl, S., Thygesen, K.S., Jacobsen, K.W.: Computational screening of perovskite metal oxides for optimal solar light capture. Energy Environ. Sci. 5, 5814–5819 (2012)

    Article  Google Scholar 

  24. Hedin, L.: New method for calculating the one-particle green’s function with application to the electron-gas problem. Phys. Rev. 139, A796–A823 (1965)

    Article  Google Scholar 

  25. Hybertsen, M.S., Louie, S.G.: Electron correlation in semiconductors and insulators: band gaps and quasiparticle energies. Phys. Rev. B 34, 5390–5413 (1986)

    Article  Google Scholar 

  26. Umari, P., Qian, X., Marzari, N., Stenuit, G., Giacomazzi, L., Baroni, S.: Accelerating GW calculations with optimal polarizability basis. Phys. Status Solidi B 248, 527–536 (2011)

    Article  Google Scholar 

  27. Di Valentin, C., Pacchioni, G., Selloni, A.: Electronic structure of defect states in hydroxylated and reduced rutile TiO2 (110) surfaces. Phys. Rev. Lett. 97, 166803 (2006)

    Article  Google Scholar 

  28. Berger, R.F., Neaton, J.B.: Computational design of low-band-gap double perovskites. Phys. Rev. B 86, 165211 (2012)

    Article  Google Scholar 

  29. Umebayashi, T., Asai, K., Kondo, T., Nakao, A.: Electronic structures of lead iodide based low-dimensional crystals. Phys. Rev. B 67, 155405 (2003)

    Article  Google Scholar 

  30. Baikie, T., Fang, Y., Kadro, J.M., Schreyer, M., Wei, F., Mhaisalkar, S.G., Grätzel, M., White, T.J.: Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. J. Mater. Chem. A 1, 5628–5641 (2013)

    Article  Google Scholar 

  31. Takahashi, Y., Obara, R., Lin, Z.-Z., Takahashi, Y., Naito, T., Inabe, T., Ishibashi, S., Terakura, K.: Charge-transport in tin-iodide perovskite CH3NH3SnI3: origin of high conductivity. Dalton Trans. 40, 5563–5568 (2011)

    Article  Google Scholar 

  32. Mosconi, E., Amat, A., Nazeeruddin, M.K., Grätzel, M., De Angelis, F.: First-principles modeling of mixed halide organometal perovskites for photovoltaic applications. J. Phys. Chem. C 117, 13902–13913 (2013)

    Article  Google Scholar 

  33. Even, J., Pedesseau, L., Jancu, J.-M., Katan, C.: Importance of spin-orbit coupling in hybrid organic/inorganic perovskites for photovoltaic applications. J. Phys. Chem. Lett. 4, 2999–3005 (2013)

    Article  Google Scholar 

  34. Stoumpos, C.C., Malliakas, C.D., Kanatzidis, M.G.: Semiconducting Tin and Lead Iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019–9038 (2013)

    Article  Google Scholar 

  35. Papavassiliou, G.C., Koutselas, I.B.: Structural, optical and related properties of some natural three- and lower-dimensional semiconductor systems. Synthetic Met. 71, 1713–1714 (1995)

    Article  Google Scholar 

  36. Chung, I., Lee, B., He, J., Chang, R.P.H., Kanatzidis, M.G.: All-solid-state dye-sensitized solar cells with high efficiency. Nature 485, 486–489 (2012)

    Article  Google Scholar 

  37. Etgar, L., Gao, P., Xue, Z., Peng, Q., Chandiran, A.K., Liu, B., Nazeeruddin, M.K., Grätzel, M.: Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J. Am. Chem. Soc. 134, 17396–17399 (2012)

    Article  Google Scholar 

  38. Sakuma, R., Friedrich, C., Miyake, T., Blügel, S., Aryasetiawan, F.: GW calculations including spin-orbit coupling: application to Hg chalcogenides. Phys. Rev. B 84, 085144 (2011)

    Article  Google Scholar 

  39. Umari, P., Mosconi, E., De Angelis, F.: Relativistic GW calculations on CH3NH3PbI3 and CH3NH3SnI3 perovskites for solar cell applications. Sci. Rep. 4, 4467 (2014)

    Article  Google Scholar 

  40. Lee, M.M., Teuscher, J., Miyasaka, T., Murakami, T.N., Snaith, H.J.: Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012)

    Article  Google Scholar 

  41. Colella, S., Mosconi, E., Fedeli, P., Listorti, A., Gazza, F., Orlandi, F., Ferro, P., Besagni, T., Rizzo, A., Calestani, G., Gigli, G., De Angelis, F., Mosca, R.: MAPbI3−xClx mixed halide perovskite for hybrid solar cells: the role of chloride as dopant on the transport and structural properties. Chem. Mater. 25, 4613–4618 (2013)

    Article  Google Scholar 

  42. Yamada, K., Nakada, K., Takeuchi, Y., Nawa, K., Yamane, Y.: Tunable perovskite semiconductor CH3NH3SnX3 (X: Cl, Br, or I) characterized by X-ray and DTA. Bull. Chem. Soc. Jpn. 84, 926–932 (2011)

    Article  Google Scholar 

  43. Zhao, Y., Zhu, K.: CH3NH3Cl-assisted one-step solution growth of CH3NH3PbI3: structure, charge-carrier dynamics, and photovoltaic properties of perovskite solar cells. J. Phys. Chem. C 118, 9412–9418 (2014)

    Article  Google Scholar 

  44. Edri, E., Kirmayer, S., Kulbak, M., Hodes, G., Cahen, D.: Chloride inclusion and hole transport material doping to improve methyl ammonium lead bromide perovskite-based high open-circuit voltage solar cells. J. Phys. Chem. Lett. 5, 429–433 (2014)

    Article  Google Scholar 

  45. Conings, B., Baeten, L., De Dobbelaere, C., D’Haen, J., Manca, J., Boyen, H.-G.: Perovskite-based hybrid solar cells exceeding 10 % efficiency with high reproducibility using a thin film sandwich approach. Adv. Mater. 26, 2041–2046 (2013)

    Article  Google Scholar 

  46. Kim, H.-B., Choi, H., Jeong, J., Kim, S., Walker, B., Song, S., Kim, J.Y.: Mixed solvents for the optimization of morphology in solution-processed, inverted-type perovskite/fullerene hybrid solar cells. Nanoscale

    Google Scholar 

  47. Chen, Q., Zhou, H., Hong, Z., Luo, S., Duan, H.-S., Wang, H.-H., Liu, Y., Li, G., Yang, Y.: Planar heterojunction perovskite solar cells via vapor-assisted solution process. J. Am. Chem. Soc. 136, 622–625 (2013)

    Article  Google Scholar 

  48. Qiu, J., Qiu, Y., Yan, K., Zhong, M., Mu, C., Yan, H., Yang, S.: All-solid-state hybrid solar cells based on a new organometal halide perovskite sensitizer and one-dimensional TiO2 nanowire arrays. Nanoscale 5, 3245–3248 (2013)

    Article  Google Scholar 

  49. Liang, P.-W., Liao, C.-Y., Chueh, C.-C., Zuo, F., Williams, S.T., Xin, X.-K., Lin, J., Jen, A.K.Y.: Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells. Adv. Mater. 26, 3748–3754 (2014)

    Article  Google Scholar 

  50. Eperon, G.E., Burlakov, V.M., Docampo, P., Goriely, A., Snaith, H.J.: Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Adv. Funct. Mater. 24, 151–157 (2014)

    Article  Google Scholar 

  51. Noh, J.H., Im, S.H., Heo, J.H., Mandal, T.N., Seok, S.I.: Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett. 13, 1764–1769 (2013)

    Article  Google Scholar 

  52. Kim, H.-S., Mora-Sero, I., Gonzalez-Pedro, V., Fabregat-Santiago, F., Juarez-Perez, E.J., Park, N.-G., Bisquert, J.: Mechanism of carrier accumulation in perovskite thin-absorber solar cells. Nat. Commun. 4 (2013)

    Google Scholar 

  53. Poglitsch, A., Weber, D.: Dynamic disorder in methylammoniumtrihalogenoplumbates (II) observed by millimeter-wave spectroscopy. J. Chem. Phys. 87, 6373–6378 (1987)

    Article  Google Scholar 

  54. Amat, A., Mosconi, E., Ronca, E., Quarti, C., Umari, P., Nazeeruddin, M.K., Grätzel, M., De Angelis, F.: Cation-induced band-gap tuning in organohalide perovskites: interplay of spin-orbit coupling and octahedra tilting. Nano Lett. 14, 3608–3616 (2014)

    Article  Google Scholar 

  55. Roiati, V., Mosconi, E., Listorti, A., Colella, S., Gigli, G., De Angelis, F.: Stark effect in perovskite/TiO2 solar cells: evidence of local interfacial order. Nano Lett. 14, 2168–2174 (2014)

    Article  Google Scholar 

  56. Mitzi, D.B.: Solution-processed inorganic semiconductors. J. Mater. Chem. 14, 2355–2365 (2004)

    Article  Google Scholar 

  57. Mosconi, E., Ronca, E., De Angelis, F.: First-principles investigation of the TiO2/organohalide perovskites interface: the role of interfacial chlorine. J. Phys. Chem. Lett. 5, 2619–2625 (2014)

    Article  Google Scholar 

  58. Feng, H.-J., Paudel, T.R., Tsymbal, E.Y., Zeng, X.C.: Tunable optical properties and charge separation in CH3NH3SnxPb1–xI3/TiO2-based planar perovskites cells. J. Am. Chem. Soc. 137, 8227–8236 (2015)

    Article  Google Scholar 

  59. Lindblad, R., Bi, D., Park, B.-W., Oscarsson, J., Gorgoi, M., Siegbahn, H., Odelius, M., Johansson, E.M.J., Rensmo, H.: Electronic structure of TiO2/CH3NH3PbI3 perovskite solar cell interfaces. J. Phys. Chem. Lett. 5, 648–653 (2014)

    Article  Google Scholar 

  60. Miller, E.M., Zhao, Y., Mercado, C.C., Saha, S.K., Luther, J.M., Zhu, K., Stevanovic, V., Perkins, C.L., van de Lagemaat, J.: Substrate-controlled band positions in CH3NH3PbI3 perovskite films. Phys. Chem. Chem. Phys. 16, 22122–22130 (2014)

    Article  Google Scholar 

  61. Schulz, P., Edri, E., Kirmayer, S., Hodes, G., Cahen, D., Kahn, A.: Interface energetics in organo-metal halide perovskite-based photovoltaic cells. Energy Environ. Sci. 7, 1377–1381 (2014)

    Article  Google Scholar 

  62. Baena, J.P.C., Steier, L., Tress, W., Saliba, M., Neutzner, S., Matsui, T., Giordano, F., Jacobsson, T.J., Kandada, A.R.S., Zakeeruddin, S. M., Petrozza, A., Abate, A., Nazeeruddin, M.K., Gratzel, M., Hagfeldt, A.: Highly efficient planar perovskite solar cells through band alignment engineering. Energy Environ. Sci. 8, 2928–2934 (2015)

    Google Scholar 

  63. Tress, W., Marinova, N., Moehl, T., Zakeeruddin, S.M., Nazeeruddin, M.K., Grätzel, M.: Understanding the rate-dependent J–V hysteresis, slow time component, and aging in CH3NH3PbI3 perovskite solar cells: the role of a compensated electric field. Energy Environ. Sci. 8, 995–1004 (2015)

    Google Scholar 

  64. Roldan-Carmona, C., Gratia, P., Zimmermann, I., Grancini, G., Gao, P., Graetzel, M., Nazeeruddin, M.K.: High efficiency methylammonium lead triiodide perovskite solar cells: the relevance of non-stoichiometric precursors. Energy Environ. Sci. 8, 3550–3556 (2015)

    Article  Google Scholar 

  65. Mosconi, E., Grancini, G., Roldan-Carmona, C., Gratia, P., Zimmermann, I., Nazeeruddin, M.K., De Angelis, F.: Enhanced TiO2/MAPbI3 electronic coupling by interface modification with PbI2. Chem. Mater. (submitted to, 2016)

    Google Scholar 

  66. Yang, J., Siempelkamp, B.D., Mosconi, E., De Angelis, F., Kelly, T.L.: Origin of the thermal instability in CH3NH3PbI3 thin films deposited on ZnO. Chem, Mater (2015)

    Google Scholar 

  67. Azpiroz, J.M., Mosconi, E., Bisquert, J., De Angelis, F.: Defect migration in methylammonium lead iodide and its role in perovskite solar cell operation. Energy Environ. Sci. 8, 2118–2127 (2015)

    Article  Google Scholar 

  68. Agiorgousis, M.L., Sun, Y.-Y., Zeng, H., Zhang, S.: Strong covalency-induced recombination centers in perovskite solar cell material CH3NH3PbI3. J. Am. Chem. Soc. 136, 14570–14575 (2014)

    Article  Google Scholar 

  69. Buin, A., Pietsch, P., Xu, J., Voznyy, O., Ip, A.H., Comin, R., Sargent, E.H.: Materials processing routes to trap-free halide perovskites. Nano Lett. 14, 6281–6286 (2014)

    Article  Google Scholar 

  70. Du, M.H.: Efficient carrier transport in halide perovskites: theoretical perspectives. J. Mater. Chem. A 2, 9091–9098 (2014)

    Article  Google Scholar 

  71. Walsh, A., Scanlon, D.O., Chen, S., Gong, X.G., Wei, S.-H.: Self-regulation mechanism for charged point defects in hybrid halide perovskites. Angew. Chem. Int. Ed. 53, 1–5 (2014)

    Article  Google Scholar 

  72. Yin, W.-J., Shi, T., Yan, Y.: Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl. Phys. Lett. 104, 063903 (2014)

    Article  Google Scholar 

  73. Almora, O., Zarazua, I., Mas-Marza, E., Mora-Sero, I., Bisquert, J., Garcia-Belmonte, G.: Capacitive dark currents, hysteresis, and electrode polarization in lead halide perovskite solar cells. J. Phys. Chem. Lett. 6, 1645–1652 (2015)

    Article  Google Scholar 

  74. Xiao, Z., Yuan, Y., Shao, Y., Wang, Q., Dong, Q., Bi, C., Sharma, P., Gruverman, A., Huang, J.: Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nat. Mater. 14, 193–198 (2014)

    Article  Google Scholar 

  75. Mosconi, E., Amat, A., Nazeeruddin, K., Grätzel, M., De Angelis, F.: First-principles modeling of mixed halide organometal perovskites for photovoltaic applications. J. Phys. Chem. C 117 (2013)

    Google Scholar 

  76. Du, M.-H.: Density functional calculations of native defects in CH3NH3PbI3: effects of spin-orbit coupling and self-interaction error. J. Phys. Chem. Lett. 6, 1461–1466 (2015)

    Article  Google Scholar 

  77. Bergmann, V.W., Weber, S.A.L., Ramos, F.J., Nazeeruddin, M.K., Grätzel, M., Li, D., Domanski, A.L., Lieberwirth, I., Ahmad, S.: Real-space observation of unbalanced charge distribution inside a perovskite-sensitized solar cell. Nat. Commun. 1–9 (2014)

    Google Scholar 

  78. Edri, E., Kirmayer, S., Mukhopadhyay, S., Gartsman, K., Hodes, G., Cahen, D.: Elucidating the charge carrier separation and working mechanism of CH3NH3PbI3–xClx perovskite solar cells. Nat. Commun. 1–8 (2014)

    Google Scholar 

  79. Snaith, H.J., Abate, A., Ball, J.M., Eperon, G.E., Leijtens, T., Noel, N.K., Stranks, S.D., Wang, J.T.-W., Wojciechowski, K., Zhang, W.: Anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 5, 1511–1515 (2014)

    Article  Google Scholar 

  80. Xing, G., Wu, B., Chen, S., Chua, J., Yantara, N., Mhaisalkar, S., Mathews, N., Sum, T.C.: Interfacial electron transfer barrier at compact TiO2/CH3NH3PbI3 heterojunction. Small 11, 3606–3613 (2015)

    Article  Google Scholar 

  81. Niu, G., Li, W., Meng, F., Wang, L., Dong, H., Qiu, Y.: Study on the stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells. J. Mater. Chem. A 2, 705–710 (2014)

    Article  Google Scholar 

  82. Yang, J., Siempelkamp, B.D., Liu, D., Kelly, T.L.: Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques. ACS Nano 9, 1955–1963 (2015)

    Article  Google Scholar 

  83. Leguy, A., Hu, Y., Campoy-Quiles, M., Alonso, M.I., Weber, O.J., Azarhoosh, P., van Schilfgaarde, M., Weller, M.T., Bein, T., Nelson, J., Docampo, P., Barnes, P.R.F.: The reversible hydration of CH3 NH3PbI3 in films, single crystals and solar cells. Chem. Mater. 27, 3397–3407 (2015)

    Article  Google Scholar 

  84. Han, Y., Meyer, S., Dkhissi, Y., Weber, K., Pringle, J.M., Bach, U., Spiccia, L., Cheng, Y.-B.: Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity. J. Mater. Chem. A 3, 8139–8147 (2015)

    Article  Google Scholar 

  85. Frost, J.M., Butler, K.T., Brivio, F., Hendon, C.H., van Schilfgaarde, M., Walsh, A.: Atomistic origins of high-performance in hybrid halide perovskite solar cells. Nano Lett. 14, 2584–2590 (2014)

    Article  Google Scholar 

  86. Christians, J.A., Miranda Herrera, P.A., Kamat, P.V.: Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air. J. Am. Chem. Soc. 137, 1530–1538 (2015)

    Google Scholar 

  87. Gottesman, R., Haltzi, E., Gouda, L., Tirosh, S., Bouhadana, Y., Zaban, A., Mosconi, E., De Angelis, F.: Extremely slow photoconductivity response of CH3NH3PbI3 perovskites suggesting structural changes under working conditions. J. Phys. Chem. Lett. 5, 2662–2669 (2014)

    Article  Google Scholar 

  88. Dong, X., Fang, X., Lv, M., Ling, B., Zhang, S., Ding, J., Yuan, N.: Improvement of the humidity stability of organic-inorganic perovskite solar cells using ultrathin Al2O3 layers prepared by atomic layer deposition. J. Mater. Chem. A 3, 5360–5367 (2015)

    Article  Google Scholar 

  89. Habisreutinger, S.N., Leijtens, T., Eperon, G.E., Stranks, S.D., Nicholas, R.J., Snaith, H.J.: Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. Nano Lett. 14, 5561–5568 (2014)

    Article  Google Scholar 

  90. Mei, A., Li, X., Liu, L., Ku, Z., Liu, T., Rong, Y., Xu, M., Hu, M., Chen, J., Yang, Y., Grätzel, M., Han, H.: A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability. Science 345, 295–298 (2014)

    Article  Google Scholar 

  91. Xie, F.X., Zhang, D., Su, H., Ren, X., Wong, K.S., Grätzel, M., Choy, W.C.H.: Vacuum-assisted thermal annealing of CH3NH3PbI3 for highly stable and efficient perovskite solar cells. ACS Nano 9, 639–646 (2015)

    Article  Google Scholar 

  92. You, J., Yang, Y., Hong, Z., Song, T.-B., Meng, L., Liu, Y., Jiang, C., Zhou, H., Chang, W.-H., Li, G.: Moisture assisted perovskite film growth for high performance solar cells. Appl. Phys. Lett. 105, 183902 (2014)

    Article  Google Scholar 

  93. Mosconi, E., Azpiroz, J.M., De Angelis, F.: Ab Initio molecular dynamics simulations of methylammonium lead iodide perovskite degradation by water. Chem. Mater. 27, 4885–4892 (2015)

    Article  Google Scholar 

  94. Haruyama, J., Sodeyama, K., Han, L., Tateyama, Y.: Termination dependence of tetragonal CH3NH3PbI3 surfaces for perovskite solar cells. J. Phys. Chem. Lett. 5, 2903–2909 (2014)

    Article  Google Scholar 

  95. Car, R., Parrinello, M.: Unified Approach for molecular dynamics and density-functional theory. Phys. Rev. Lett. 55, 2471–2474 (1985)

    Article  Google Scholar 

  96. Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Guido, L.C., Cococcioni, M., Dabo, I., Corso, A.D., Gironcoli, S.D., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A.P., Smogunov, A., Umari, P., Wentzcovitch, R.M.: QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 21, 395502 (2009)

    Google Scholar 

  97. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  Google Scholar 

  98. Grimme, S.: Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comp. Chem. 27, 1787–1799 (2006)

    Article  Google Scholar 

  99. Hailegnaw, B., Kirmayer, S., Edri, E., Hodes, G., Cahen, D.: Rain on methylammonium lead iodide based perovskites: possible environmental effects of perovskite solar cells. J. Phys. Chem. Lett. 6, 1543–1547 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippo De Angelis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mosconi, E., Etienne, T., De Angelis, F. (2016). First-Principles Modeling of Organohalide Thin Films and Interfaces. In: Park, NG., Grätzel, M., Miyasaka, T. (eds) Organic-Inorganic Halide Perovskite Photovoltaics. Springer, Cham. https://doi.org/10.1007/978-3-319-35114-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-35114-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-35112-4

  • Online ISBN: 978-3-319-35114-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics