Skip to main content

Inorganic Hole-Transporting Materials for Perovskite Solar Cell

  • Chapter
  • First Online:
Organic-Inorganic Halide Perovskite Photovoltaics

Abstract

Organo-lead halide perovskites have attracted much attention for solar cell applications due to their high-efficiency—over 20 %—and the low-cost of fabrication without vacuum processing [14]. The main research has been performed using organic hole conductors (mostly, 2,2′,7,7′-tetrakis(N,N′-di-p-methoxyphenylamine)-9,9′-spirobifluorene (spiro-OMeTAD) and poly-[3-hexylthiophene-2,5-diyl](P3HT)) in an attempt to build efficient hybrid perovskite solar cells. However, the organic hole-transporting materials (HTM) used are normally quite expensive due to complicated synthesis procedures or high purity requirements. Moreover, the instability of these organic compounds has been a major issue with regard to commercial applications. Therefore, instead of organic materials, research of stable and low-cost inorganic materials is very significant for large-scale industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee, M.M., Teuscher, J., Miyasaka, T., Murakami, T.N., Snaith, H.J.: Science, efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012)

    Article  Google Scholar 

  2. Kim, H.-S., Lee, C.-R., Im, J.-H., Lee, K.-B., Moehl, T., Marchioro, A., Moon, S.-J., Humphry-Baker, J.-H., Yum, J.E., Moser, M., Grátzel, N.-G.: Park, lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9 %. Sci. Rep. 2, 591 (2012)

    Google Scholar 

  3. Burschka, J., Pellet, N., Moon, S.-J., Humphry-Baker, R., Gao, P., Nazeeruddin, M.K., Grátzel, M.: Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013)

    Article  Google Scholar 

  4. Yang, W.S., Noh, J.H., Jeon, N.J., Kim, Y.C., Ryu, S., Seo, J., Seok, S.I.: High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348, 1234–1237 (2015)

    Article  Google Scholar 

  5. Li, M.-H., Shen, a P.-S., Wang, K.-C., Guo, T.-F., Chen, P.: Inorganic p-type contact materials for perovskite based solar cells. J. Mater. Chem. A 3, 9011–9019 (2015)

    Google Scholar 

  6. Schmidt-Mende, L., Bach, U., Humphry-Baker, R., Horiuchi, T., Miura, H., Ito, S., Uchida, S., Grätzel, M.: Organic dye for highly efficient solid state dye sensitized solar cells. Adv. Mater. 17, 813–815 (2005)

    Article  Google Scholar 

  7. Burschka, J., Dualeh, A., Kessler, F., Barano, E., Cevey-Ha, N.-L., Yi, C., Nazeeruddin, M.K., Grätzel, M.: Tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(III) as p-Type dopant for organic semiconductors and its application in highly efficient solid-state dye-sensitized solar cells. J. Am. Chem. Soc. 133, 18042–18045 (2011)

    Article  Google Scholar 

  8. Ku, Z., Rong, Y., Xu, M., Liu, T., Han, H.: Full printable processed mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells with carbon counter electrode. Sci. Rep. 3, 3132 (2013)

    Article  Google Scholar 

  9. Mei, A., Li, X., Liu, L., Ku, Z., Liu, T., Rong, Y., Xu, M., Hu, M., Chen, J., Yang, Y., Grätzel, M., Han, H.: A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science 345, 295–298 (2014)

    Article  Google Scholar 

  10. Zhang, L., Liu, T., Liu, L., Hu, M., Yang, Y., Mei, A., Han, H.: The effect of carbon counter electrode on fully printable mesoscopic perovskite solar cell. J. Mater. Chem. A 3, 9165–9170 (2015)

    Article  Google Scholar 

  11. Liu, T., Liu, L., Hu, M., Yang, Y., Zhang, L., Mei, A., Han, H.: Critical parameters in TiO2/ZrO2/Carbon-based mesoscopic perovskite solar cell. J. Power Sources 293, 533–538 (2015)

    Article  Google Scholar 

  12. Wang, H., Hu, X., Chen, H.: The effect of carbon black in carbon counter electrode for CH3NH3PbI3/TiO2 heterojunction solar cells. RSC Adv. 5, 30192–30196 (2015)

    Article  Google Scholar 

  13. Yang, L., Zhang, Z., Fang, S., Gao, X., Obata, M.: Influence of the preparation conditions of TiO2 electrodes on the performance of solid-state dye-sensitized solar cells with CuI as a hole collector. Sol. Energy 81, 717–722 (2007)

    Article  Google Scholar 

  14. Kumara, G.R.R.A., Konno, A., Senadeera, G.K.R., Jayaweera, P.V.V., De Silva, D.B.R.A., Tennakone, K.: Dye-sensitized solar cell with the hole collector p-CuSCN deposited from a solution in n-propyl sulphide. Sol. Energy Mater. Sol. Cells 69, 195–199 (2001)

    Article  Google Scholar 

  15. O’Regan, B., Schwartz, D.T., Zakeeruddin, S.M., Grätzel, M.: Electrodeposited nanocomposite n-p heterojunctions for solid-state dye-sensitized photovoltaics. Adv. Mater. 12, 1263–1267 (2000)

    Article  Google Scholar 

  16. Tsujimoto, K., Nguyen, D.-C., Ito, S., Nishino, H., Matsuyoshi, H., Konno, A., Kumara, G.R.A., Tennakone, K.: TiO2 surface treatment effects by Mg2+, Ba2+, and Al3+ on Sb2S3 extremely thin absorber solar cells. J. Phys. Chem. C 116, 13465–13471 (2012)

    Article  Google Scholar 

  17. Christians, J.A., Fung, R.C.M., Kamat, P.V.: An inorganic hole conductor for organo-lead halide perovskite solar cells. Improved hole conductivity with copper iodide. J. Am. Chem. Soc. 136, 758–764 (2014)

    Article  Google Scholar 

  18. Sepalage, G.A., Meyer, S., Pascoe, A., Scully, A.D., Huang, F., Bach, U., Cheng, Y.-B., Spiccia, L.: Copper(I) iodide as hole-conductor in planar perovskite solar cells: probing the origin of J-V hysteresis. Adv. Funct. Mater. 25, 5650–5661 (2015)

    Article  Google Scholar 

  19. Chen, W.-Y., Deng, L.-L., Dai, S.-M., Wang, X., Tian, C.-B., Zhan, X.-X., Xie, S.-Y., Huang, R.-B., Zheng, L.-S.: Low-cost solution-processed copper iodide as an alternative to PEDOT:PSS hole transport layer for efficient and stable inverted planar heterojunction perovskite solar cells. J. Mater. Chem. A 3, 19353–19359 (2015)

    Article  Google Scholar 

  20. Ito, S., Tanaka, S., Vahlman, H., Nishino, H., Manabe, K., Lund, P.: Carbon-double-bond-free printed solar cells from TiO2/CH3NH3PbI3/CuSCN/Au: structural control and photoaging effects. ChemPhysChem 15, 1194–1200 (2014)

    Article  Google Scholar 

  21. Chavhan, S., Miguel, O., Grande, H.-J., Gonzalez-Pedro, V., S´anchez, R.S., Barea, E.M., Mora-Seró, I., Tena-Zaera, R.: Organo-metal halide perovskite-based solar cells with CuSCN as the inorganic hole selective contact. J. Mater. Chem. A 3, 19353 (2015)

    Google Scholar 

  22. Qin, P., Tanaka, S., Ito, S., Tetreault, N., Manabe, K., Nishino, H., Nazeeruddin, M.K., Grätzel, M.: Inorganic hole conductor-based lead halide perovskite solar cells with 12.4 % conversion efficiency. Nat. Commun. 5, 3834 (2014). doi:10.1038/ncomms4834

    Google Scholar 

  23. Ito, S., Tanaka, S., Nishino, H.: Substrate-preheating effects on PbI2 spin coating for perovskite solar cells via sequential deposition. Chem. Lett. 44, 849–851 (2015)

    Article  Google Scholar 

  24. Murugadoss, G., Mizuta, G., Tanaka, S., Nishino, H., Umeyama, T., Imahori, H., Ito, S.: Double functions of porous TiO2 electrodes on CH3NH3PbI3 perovskite solar cells: enhancement of perovskite crystal transformation and prohibition of short circuiting. APL Mater. 2, Article ID 081511 (2014)

    Google Scholar 

  25. Ito, S., Zakeeruddin, S.M., Comte, P., Liska, P., Kuang, D., Grätzel, M.: Bifacial dye-sensitized solar cells based on an ionic liquid electrolyte. Nat. Photonics 2, 693–698 (2008)

    Article  Google Scholar 

  26. Ito, S., Tanaka, S., Nishino, H.: Lead-halide perovskite solar cells by CH3NH3I dripping on PbI2−CH3NH3I−DMSO precursor layer for planar and porous structures using CuSCN hole-transporting material. J. Phys. Chem. Lett. 6, 881–886 (2015)

    Article  Google Scholar 

  27. Ito, S., Kanaya, S., Nishino, H., Umeyama, T., Imahori, H.: Material exchange property of organo lead halide perovskite with hole-transporting materials. Photonics 2, 1043–1053 (2015)

    Article  Google Scholar 

  28. Xiao, M., Huang, F., Huang, W., Dkhissi, Y., Zhu, Y., Etheridge, J., Gray-Weale, A., Bach, U., Cheng, Y.-B., Spiccia, L.: A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angew. Chem. Int. Ed. 53, 9898–9903 (2014)

    Article  Google Scholar 

  29. Jiang, Q., Rebollar, D., Gong, J., Piacentino, E.L., Zheng, C., Xu, T.: Pseudohalide-induced moisture tolerance in perovskite CH3NH3Pb(SCN)2I Thin Films. Angew. Chem. Int. Ed. 54, 7617–7620 (2015)

    Article  Google Scholar 

  30. Zhao, Y., Zhu, K.: CH3NH3Cl-assisted one-step solution growth of CH3NH3PbI3: structure, charge-carrier dynamics, and photovoltaic properties of perovskite solar cells. J. Phys. Chem. C 118, 9412–9418 (2014)

    Article  Google Scholar 

  31. Noh, J.H., Im, S.H., Heo, J.H., Mandal, T.N., Seok, S.I.: Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett. 13, 1764–1769 (2013)

    Article  Google Scholar 

  32. Subbiah, A.S., Halder, A., Ghosh, S., Mahuli, N., Hodes, G., Sarkar, S.K.: Inorganic hole conducting layers for perovskite-based solar cells. J. Phys. Chem. Lett. 5, 1748–1753 (2014)

    Article  Google Scholar 

  33. Ye, S., Sun, W., Li, Y., Yan, W., Peng, H., Bian, Z., Liu, Z., Huang, C.: CuSCN-based inverted planar perovskite solar cell with an average PCE of 15.6 %. Nano Lett. 15, 3723–3728 (2015)

    Article  Google Scholar 

  34. Zhao, K., Munir, R., Yan, B., Yang, Y., Kim, T., Amassian, A.: Solution-processed inorganic copper(I) thiocyanate (CuSCN) hole transporting layers for efficient p-i-n perovskite solar cells. J. Mater. Chem. A 3, 20554–20559 (2015)

    Article  Google Scholar 

  35. Jung, J.W., Chueh, C.-C., Jen, A.K.-Y.: High-performance semitransparent perovskite solar cells with 10 % power conversion efficiency and 25 % average visible transmittance based on transparent CuSCN as the hole-transporting material. Adv. Energy Mater. 5, 1500486 (2015)

    Article  Google Scholar 

  36. Zuo, C., Ding, L.: Solution-processed Cu2O and CuO as hole transport materials for efficient perovskite solar cells. Small 11, 5528–5532 (2015)

    Article  Google Scholar 

  37. Chan, X.-H., Jennings, J.R., Hossain, M.A., Yu, K.K.Z., Wang, Q.: Characteristics of p-NiO thin films prepared by spray pyrolysis and their application in CdS-sensitized photocathodes. J. Electrochem. Soc. 158, H733–H740 (2011)

    Article  Google Scholar 

  38. Safari-Alamuti, F., Jennings, J.R., Hossain, M.A., Yung, L.Y.L., Wang, Q.: Conformal growth of nanocrystalline CdX (X = S, Se) on mesoscopic NiO and their photoelectrochemical properties. Phys. Chem. Chem. Phys. 15, 4767 (2013)

    Article  Google Scholar 

  39. Jeng, J.-Y., Chen, K.-C., Chiang, T.-Y., Lin, P.-Y., Tsai, T.-D., Chang, Y.-C., Guo, T.-F., Chen, P., Wen, T.-C., Hsu, Y.-J.: Nickel oxide electrode interlayer in CH3NH3PbI3 perovskite/PCBM planar-heterojunction hybrid solar cells. Adv. Mater. 26, 4107–4113 (2014)

    Article  Google Scholar 

  40. Wang, K.-C., Jeng, J.-Y., Shen, P.-S., Chang, Y.-C., Diau, E.W.-G., Tsai, C.-H., Chao, T.-Y., Hsu, H.-C., Lin, P.-Y., Chen, P., Guo, T.-F., Wen, T.-C.: p-type Mesoscopic nickel oxide/organometallic perovskite heterojunction solar cells. Sci. Rep. 4, 4756 (2014)

    Google Scholar 

  41. Tian, H., Xu, B., Chen, H., Johansson, E.M.J., Boschloo, G.: Solid-state perovskite-sensitized p-Type mesoporous nickel oxide solar cells. ChemSusChem 7, 2150–2155 (2014)

    Article  Google Scholar 

  42. Hu, L., Peng, J., Wang, W., Xia, Z., Yuan, J., Lu, J., Huang, X., Ma, W., Song, H., Chen, W., Cheng, Y.-B., Tang, J.: Sequential deposition of CH3NH3PbI3 on planar NiO film for efficient planar perovskite solar cells. ACS Photonics 1, 547–553 (2014)

    Article  Google Scholar 

  43. Zhu, Z., Bai, Y., Zhang, T., Liu, Z., Long, X., Wei, Z., Wang, Z., Zhang, L., Wang, J., Yan, F., Yang, S.: High-performance hole-extraction layer of Sol–Gel-processed NiO nanocrystals for inverted planar perovskite solar cells. Angew. Chem. Int. Ed. 53, 12571–12575 (2014)

    Google Scholar 

  44. You, J., Meng, L., Song, T.-B., Guo, T.-F., Yang, Y., Chang, W.-H., Hong, Z., Chen, H., Zhou, H., Chen, Q., Liu, Y., Marco, N.D., Yang, Y.: Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers. Nat. Nanotechnol. 11, 75–81 (2016)

    Article  Google Scholar 

  45. Wang, K.-C., Shen, P.-S., Li, M.-H., Chen, S., Lin, M.-W., Chen, P., Guo, T.-F.: Low-temperature sputtered nickel oxide compact thin film as effective electron blocking layer for mesoscopic NiO/CH3NH3PbI3 perovskite heterojunction solar cells. ACS Appl. Mater. Interfaces 6, 11851–11858 (2014)

    Article  Google Scholar 

  46. Cui, J., Meng, F., Zhang, H., Cao, K., Yuan, H., Cheng, Y., Huang, F., Wang, M.: CH3NH3PbI3-based planar solar cells with magnetron-sputtered nickel oxide. ACS Appl. Mater. Interfaces 6, 22862–22870 (2014)

    Article  Google Scholar 

  47. Park, J.H., Seo, J., Park, S., Shin, S.S., Kim, Y.C., Jeon, N.J., Shin, H.-W., Ahn, T.K., Noh, J.H., Yoon, S.C., Hwang, C.S., Seok, S.I.: Efficient CH3NH3PbI3 perovskite solar cells employing nanostructured p-Type NiO electrode formed by a pulsed laser deposition. Adv. Mater. 27, 4013–4019 (2015)

    Article  Google Scholar 

  48. Kim, J.H., Liang, P.-W., Williams, S.T., Cho, N., Chueh, C.-C., Glaz, M.S., Ginger, D.S., Jen, A.K.-Y.: High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copper-doped nickel oxide hole-transporting layer. Adv. Mater. 27, 695–701 (2015)

    Article  Google Scholar 

  49. Chen, W., Wu, Y., Liu, J., Qin, C., Yang, X., Islam, A., Cheng, Y.-B., Han, L.: Hybrid interfacial layer leads to solid performance improvement of inverted perovskite solar cells. Energy Environ. Sci. 8, 629–640 (2015)

    Article  Google Scholar 

  50. Chen, W., Wu, Y., Yue, Y., Liu, J., Zhang, W., Yang, X., Chen, H., Bi, E., Ashraful, I., Grätzel, M., Han, L.: Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 350, 944–948 (2015)

    Article  Google Scholar 

  51. Park, I.J., Park, M.A., Kim, D.H., Park, G.D., Kim, B.J., Son, H.J., Ko, M.J., Lee, D.-K., Park, T., Shin, H., Park, N.-G., Jung, H.S., Kim, J.Y.: New hybrid hole extraction layer of perovskite solar cells with a planar p-i-n geometry. J. Phys. Chem. C 119, 27285–27290 (2015)

    Article  Google Scholar 

  52. Liu, Z., Zhang, M., Xu, X., Bu, L., Zhang, W., Li, W., Zhao, Z., Wang, M., Chenga, Y.-B., He, H.: p-Type mesoscopic NiO as an active interfacial layer for carbon counter electrode based perovskite solar cells. Dalton Trans. 44, 3967–3973 (2015)

    Article  Google Scholar 

  53. Xu, X., Liu, Z., Zuo, Z., Zhang, M., Zhao, Z., Shen, Y., Zhou, H., Chen, Q., Yang, Y., Wang, M.: Hole selective NiO contact for efficient perovskite solar cells with carbon electrode. Nano Lett. 15, 2402–2408 (2015)

    Article  Google Scholar 

  54. Cao, K., Zuo, Z., Cui, J., Shen, Y., Moehl, T., Zakeeruddin, S.M., Grätzel, M., Wang, M.: Efficient screen printed perovskite solar cells based on mesoscopic TiO2/Al2O3/NiO/carbon architecture. Nano Energy 17, 171–179 (2015)

    Article  Google Scholar 

  55. Zhao, Y., Nardes, A.M., Zhu, K.: Effective hole extraction using MoOx-Al contact in perovskite CH3NH3PbI3 solar cells. Appl. Phys. Lett. 104, 213906 (2014)

    Article  Google Scholar 

  56. Liang, L., Huang, Z., Cai, L., Chen, W., Wang, B., Chen, K., Bai, H., Tian, Q., Fan, B.: Magnetron sputtered zinc oxide nanorods as thickness-insensitive cathode interlayer for perovskite planar-heterojunction solar cells. ACS Appl. Mater. Interfaces 6, 20585–20589 (2014)

    Article  Google Scholar 

  57. Hou, F., Su, Z., Jin, F., Yan, X., Wang, L., Zhao, H., Zhu, J., Chu, B., Lia, W.: Efficient and stable planar heterojunction perovskite solar cells with an MoO3/PEDOT:PSS hole transporting layer. Nanoscale 7, 9427 (2015)

    Article  Google Scholar 

  58. Löper, P., Moon, S.-J., Nicolas, S.M., Niesen, B., Ledinsky, M., Nicolay, S., Bailat, J., Yum, J.-H., Wolf, S.D., Ballif, C.: Organic–inorganic halide perovskite/crystalline silicon four-terminal tandem solar cells. Phys. Chem. Chem. Phys. 17, 1619–1629 (2015)

    Article  Google Scholar 

  59. Kim, B.-S., Kim, T.-M., Choi, M.-S., Shim, H.-S., Kim, J.-J.: Fully vacuum–processed perovskite solar cells with high open circuit voltage using MoO3/NPB as hole extraction layers. Org. Electron. 17, 102–106 (2015)

    Article  Google Scholar 

  60. Batmunkh, M., Shearer, C.J., Biggs, M.J., Shapter, J.G.: Nanocarbons for mesoscopic perovskite solar cells. J. Mater. Chem. A 3, 9020–9031 (2015)

    Article  Google Scholar 

  61. Zhou, H., Shi, Y., Dong, Q., Zhang, H., Xing, Y., Wang, K., Du, Y., Ma, T.: Hole-conductor-free, metal-electrode-free TiO2/CH3NH3PbI3 heterojunction solar cells based on a low-temperature carbon electrode. J. Phys. Chem. Lett. 5, 3241–3246 (2014)

    Article  Google Scholar 

  62. Zhou, H., Shi, Y., Wang, K., Dong, Q., Bai, X., Xing, Y., Du, Y., Ma, T.: Low-temperature processed and carbon-based ZnO/CH3NH3PbI3/C planar heterojunction perovskite solar cells. J. Phys. Chem. C 119, 4600–4605 (2015)

    Article  Google Scholar 

  63. Wei, Z., Chen, H., Yan, K., Yang, S.: Inkjet printing and instant chemical transformation of a CH3NH3PbI3/nanocarbon electrode and interface for planar perovskite solar cells. Angew. Chem. Int. Ed. 53, 13239–23243 (2014)

    Article  Google Scholar 

  64. Chen, H., Wei, Z., Yan, K., Yi, Y., Wang, J., Yang, S.: Liquid phase deposition of TiO2 nanolayer affords CH3NH3PbI3/nanocarbon solar cells with high open-circuit voltage. Faraday Discuss. 176, 271–286 (2014)

    Article  Google Scholar 

  65. Wei, Z., Yan, K., Chen, H., Yi, Y., Zhang, T., Long, X., Li, J., Zhang, L., Wang, J., Yang, S.: Cost-efficient clamping solar cells using candle soot for hole extraction from ambipolar perovskites. Energy Environ. Sci. 7, 3326–3333 (2014)

    Article  Google Scholar 

  66. Zhang, F., Yang, X., Wang, H., Cheng, M., Zhao, J., Sun, L.: Structure engineering of hole-conductor free perovskite-based solar cells with low-temperature-processed commercial carbon paste as cathode. ACS Appl. Mater. Interfaces 6, 16140–16146 (2014)

    Article  Google Scholar 

  67. Wei, H., Xiao, J., Yang, Y., Lv, S., Shi, J., Xu, X., Dong, J., Luo, Y., Li, D., Meng, Q.: Free-standing flexible carbon electrode for highly efficient hole-conductor-free perovskite solar cells. Carbon 93, 861–868 (2015)

    Article  Google Scholar 

  68. Yang, Y., Xiao, J., Wei, H., Zhu, L., Li, D., Luo, Y., Wu, H., Meng, Q.: An all-carbon counter electrode for highly efficient hole-conductor-free organo-metal perovskite solar cells. RSC Adv. 4, 52825–52830 (2014)

    Article  Google Scholar 

  69. Wu, Z., Bai, S., Xiang, J., Yuan, Z., Yang, Y., Cui, W., Gao, X., Liu, Z., Jin, Y., Sun, B.: Efficient planar heterojunction perovskite solar cells employing graphene oxide as hole conductor. Nanoscale 6, 10505–10510 (2014)

    Article  Google Scholar 

  70. Li, Z., Kulkarni, S.A., Boix, P.P., Shi, E., Cao, A., Fu, K., Batabyal, S.K., Zhang, J., Xiong, Q., Wong, L.H., Mathews, N., Mhaisalkar, S.G.: Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells. ACS Nano 8, 6797–6804 (2014)

    Article  Google Scholar 

  71. Yeo, J.-S., Kang, R., Lee, S., Jeon, Y.-J., Myoung, N., Lee, C.-L., Kim, D.-Y., Yun, J.-M., Seo, Y.-H., Kim, S.-S., Na, S.-I.: Highly efficient and stable planar perovskite solar cells with reduced graphene oxide nanosheets as electrode interlayer. Nano Energy 12, 96–104 (2015)

    Article  Google Scholar 

  72. Yan, K., Wei, Z., Li, J., Chen, H., Yi, Y., Zheng, X., Long, X., Wang, Z., Wang, J., Xu, J., Yang, S.: High-performance graphene-based hole conductor-free perovskite solar cells: Schottky junction enhanced hole extraction and electron blocking. Small 11, 2269–2274 (2015)

    Article  Google Scholar 

  73. Cao, J., Liu, Y.-M., Jing, X., Yin, J., Li, J., Xu, B., Tan, Y.-Z., Zheng, N.: Well-defined thiolated nanographene as hole-transporting material for efficient and stable perovskite solar cells. J. Am. Chem. Soc. 137, 10914–10917 (2015)

    Article  Google Scholar 

  74. Li, W., Dong, H., Guo, X., Li, N., Li, J., Niu, G., Wang, L.: Graphene oxide as dual functional interface modifier for improving wettability and retarding recombination in hybrid perovskite solar cells. J. Mater. Chem. A 2, 20105–20111 (2014)

    Article  Google Scholar 

  75. You, P., Liu, Z., Tai, Q., Liu, S., Yan, F.: Efficient semitransparent perovskite solar cells with graphene electrodes. Adv. Mater. 24, 3632–3638 (2015)

    Article  Google Scholar 

  76. Lang, F., Gluba, M.A., Albrecht, S., Rappich, J., Korte, L., Rech, B., Nickel, N.H.: Perovskite solar cells with large-area CVD-graphene for tandem solar cells. J. Phys. Chem. Lett. 6, 2745–2750 (2015)

    Article  Google Scholar 

  77. Jeon, I., Chiba, T., Delacou, C., Guo, Y., Kaskela, A., Reynaud, O., Kauppinen, E.I., Maruyama, S., Matsuo, Y.: Single-walled carbon nanotube film as electrode in indium-free planar heterojunction perovskite solar cells: investigation of electron-blocking layers and dopants. Nano Lett. 15, 6665–6671 (2015)

    Article  Google Scholar 

  78. Wang, X., Li, Z., Xu, W., Kulkarni, S.A., Batabyal, S.K., Zhang, S., Cao, A., Wong, L.H.: TiO2 nanotube arrays based flexible perovskite solar cells with transparent carbon nanotube electrode. Nano Energy 11, 728–735 (2015)

    Article  Google Scholar 

  79. Liu, T., Kim, D., Han, H., Yusoff, A.R.b.M., Jang, J.: Fine-tuning optical and electronic properties of graphene oxide for highly efficient perovskite solar cells. Nanoscale 7, 10708–10718 (2015)

    Google Scholar 

  80. Habisreutinger, S.N., Leijtens, T., Eperon, G.E., Stranks, S.D., Nicholas, R.J., Snaith, H.J.: Enhanced hole extraction in perovskite solar cells through carbon nanotubes. J. Phys. Chem. Lett. 5, 4207–4212 (2014)

    Article  Google Scholar 

  81. Habisreutinger, S.N., Leijtens, T., Eperon, G.E., Stranks, S.D., Nicholas, R.J., Snaith, H.J.: Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells. Nano Lett. 14, 5561–5568 (2014)

    Article  Google Scholar 

  82. Cai, M., Tiong, V.T., Hreid, T., Bell, J., Wang, H.: An efficient hole transport material composite based on poly(3-hexylthiophene) and bamboo-structured carbon nanotubes for high performance perovskite solar cells. J. Mater. Chem. A 3, 2784–2793 (2015)

    Article  Google Scholar 

  83. Lee, J., Menamparambath, M.M., Hwang, J.-Y., Baik, S.: Hierarchically structured hole transport layers of spiro-OMeTAD and multiwalled carbon nanotubes for perovskite solar cells. ChemSusChem. 8, 2358–2362 (2015)

    Article  Google Scholar 

  84. Luo, Q., Zhang, Y., Liu, C., Li, J., Wang, N., Lin, H.: Iodide-reduced graphene oxide with dopant-free spiro-OMeTAD for ambient stable and high-efficiency perovskite solar cells. J. Mater. Chem. A 3, 15996–16004 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seigo Ito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ito, S. (2016). Inorganic Hole-Transporting Materials for Perovskite Solar Cell. In: Park, NG., Grätzel, M., Miyasaka, T. (eds) Organic-Inorganic Halide Perovskite Photovoltaics. Springer, Cham. https://doi.org/10.1007/978-3-319-35114-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-35114-8_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-35112-4

  • Online ISBN: 978-3-319-35114-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics